Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Neuromuscul Disord ; 29(1): 21-29, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30553700

RESUMEN

Spinal muscular atrophy (SMA) is a rare genetic and progressively debilitating neuromuscular disease. It is the leading genetic cause of death among infants. In SMA, low levels of survival of motor neuron (SMN) protein lead to motor neuron death and muscle atrophy as the SMN protein is critical to motor neuron survival. SMA is caused by mutations in, or deletion of, the SMN1 gene. A second SMN gene, SMN2, produces only low levels of functional SMN protein due to alternative splicing which excludes exon 7 from most transcripts, generating truncated, rapidly degraded SMN protein. Patients with SMA rely on limited expression of functional SMN full-length protein from the SMN2 gene, but insufficient levels are generated. RG7800 is an oral, selective SMN2 splicing modifier designed to modulate alternative splicing of SMN2 to increase the levels of functional SMN protein. In two trials, oral administration of RG7800 increased in blood full-length SMN2 mRNA expression in healthy adults and SMN protein levels in SMA patients by up to two-fold, which is expected to provide clinical benefit.


Asunto(s)
Atrofia Muscular Espinal/sangre , Atrofia Muscular Espinal/tratamiento farmacológico , Fármacos Neuromusculares/uso terapéutico , Pirazinas/uso terapéutico , Pirimidinas/uso terapéutico , Administración Oral , Adolescente , Adulto , Empalme Alternativo/efectos de los fármacos , Niño , Preescolar , Método Doble Ciego , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Atrofia Muscular Espinal/genética , Fármacos Neuromusculares/sangre , Pirazinas/sangre , Pirimidinas/sangre , ARN Mensajero/sangre , Proteína 2 para la Supervivencia de la Neurona Motora/sangre , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Adulto Joven
2.
Ann Clin Transl Neurol ; 4(5): 292-304, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28491897

RESUMEN

OBJECTIVE: Recent advances in understanding Spinal Muscular Atrophy (SMA) etiopathogenesis prompted development of potent intervention strategies and raised need for sensitive outcome measures capable of assessing disease progression and response to treatment. Several biomarkers have been proposed; nevertheless, no general consensus has been reached on the most feasible ones. We observed a wide range of measures over 1 year to assess their ability to monitor the disease status and progression. METHODS: 18 SMA patients and 19 healthy volunteers (HV) were followed in this 52-weeks observational study. Quantitative-MRI (qMRI) of both thighs and clinical evaluation of motor function was performed at baseline, 6, 9 and 12 months follow-up. Blood samples were taken in patients for molecular characterization at screening, 9 and 12 month follow-up. Progression, responsiveness and reliability of collected indices were quantified. Correlation analysis was performed to test for potential associations. RESULTS: QMRI indices, clinical scales and molecular measures showed high to excellent reliability. Significant differences were found between qMRI of SMA patients and HV. Significant associations were revealed between multiple qMRI measures and functional clinical scales. None of the qMRI, clinical, or molecular measures was able to detect significant disease progression over 1 year. INTERPRETATION: We probed a variety of quantitative measures for SMA in a slowly-progressing disease population over 1 year. The presented measures demonstrated potential to provide a closer link to underlying disease biology as compared to conventional functional scales. The proposed biomarker framework can guide implementation of more sensitive endpoints in future clinical trials and prove their utility in search for novel disease-modifying therapies.

3.
PLoS One ; 10(10): e0139950, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26468953

RESUMEN

Spinal muscular atrophy is caused by a functional deletion of SMN1 on Chromosome 5, which leads to a progressive loss of motor function in affected patients. SMA patients have at least one copy of a similar gene, SMN2, which produces functional SMN protein, although in reduced quantities. The severity of SMA is variable, partially due to differences in SMN2 copy numbers. Here, we report the results of a biomarker study characterizing SMA patients of varying disease severity. SMN copy number, mRNA and Protein levels in whole blood of patients were measured and compared against a cohort of healthy controls. The results show differential regulation of expression of SMN2 in peripheral blood between patients and healthy subjects.


Asunto(s)
Biomarcadores/sangre , Variaciones en el Número de Copia de ADN , Atrofia Muscular Espinal/sangre , Atrofia Muscular Espinal/diagnóstico , Proteína 1 para la Supervivencia de la Neurona Motora/sangre , Adolescente , Adulto , Bioensayo , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Masculino , Atrofia Muscular Espinal/genética , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/sangre , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA