Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Analyst ; 147(9): 1873-1880, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35420086

RESUMEN

Early diagnosis of tumor markers is of great importance for the successful treatment of cancer. As a high-throughput and high-sensitivity detection technology, liquid suspension biochips based on quantum dot (QD) encoded microspheres have been widely used in the immunodetection of tumor markers. In this work, maleic anhydride grafted PLA (PLA-MA) microspheres based on quantum dot encoding were used as carriers for liquid phase suspension biochips for the immunoassay of tumor markers. PLA-MA fluorescent beads are prepared by embedding CdSe/ZnS quantum dots in PLA-MA using Shirasu porous glass (SPG) membrane emulsification technology, which has high fluorescence intensity, good stability, and good dispersion. Fluorescent immunoassays on dipsticks found that PLA-MA microspheres have high biological activity and good stability, which is conducive to immunoassays. Based on this, using the characteristics of CdSe/ZnS quantum dots and flow cytometry, monochromatic and two-color coding methods were developed, and 9 distinguishable coding beads were prepared. The results showed that PLA-MA fluorescent microspheres exhibited good biocompatibility, stable coding signals, low background noise, and low detection limits when performing quaternary immunoassays on tumor markers CA125, CA199, CA724, and CEA by CdSe/ZnS QD-encoded PLA-MA microsphere binding flow cytometry.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Biomarcadores de Tumor , Colorantes , Inmunoensayo/métodos , Anhídridos Maleicos , Microesferas , Poliésteres , Sulfuros , Compuestos de Zinc
2.
Analyst ; 146(15): 4796-4802, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34259241

RESUMEN

Quantum dot (QD)-encoded microbeads as optical barcode with high fluorescence intensity and fluorescence uniformity, excellent stability and dispersity are greatly important for suspension array (SA). However, the size distribution of the microbeads mass-produced by the membrane emulsification method usually shows polydispersity, which leads to obstacles, imposing labour-intensive experimental iterations for the application of fluorescence-encoded microbeads as a distinguishable barcode. Herein, a simple simulation strategy based on a multicolor fluorescence model (MFM) was used to predict the influence of the microbeads' size distribution on the barcode signals. The point L and S respectively represent the two end points of the barcode, and the line segment LS can be considered as a cluster of the QD-encoded microbeads (simulated barcode). Experimental clusters of fluorescent microbeads were found to be in good agreement with the simulated barcodes. This simple simulation strategy can effectively simplify the experimental iteration process because the fluorescence-encoded microbeads are not decoded by a flow cytometer. Moreover, when applied for the high-throughput ultrasensitive detection of three tumor markers (CEA, CA125 and CA199) in a single sample, these barcodes exhibit superior detection performance. Detection limits of 0.028 ± 0.001 ng mL-1 for CEA, 1.5 ± 0.02 KU L-1 for CA125 and 0.8 ± 0.1 KU L-1 for CA199 are achieved, which meet the sensitivity criteria of tumor marker analysis. Therefore, this simple simulation strategy helps to overcome technical and economic obstacles for the widespread application of SA.


Asunto(s)
Puntos Cuánticos , Colorantes , Citometría de Flujo , Microesferas , Suspensiones
3.
Biosens Bioelectron ; 227: 115153, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36805273

RESUMEN

Magnetic quantum dot (QD) barcode holds great potential for automatic suspension array and rapid point-of-care detection since it enables simultaneous target encoding, enrichment and separation. However, a serious obstacle to enhancing the encoding capacity of magnetic QD microbeads (MBs) is the fluorescence quenching of magnetic nanoparticles (MNPs) to quantum dots (QDs) in the visible wavelength range due to the broad and strong optical absorption spectrum of MNPs. Here, we report Fe3O4/TiO2 core/shell MNPs and CdSe/ZnS QDs for the construction of dual-function magnetic QD barcodes. Fe3O4/TiO2 MNPs can significantly inhibit fluorescence quenching because the weak absorption of visible light by the TiO2. The two-dimension barcode library of 30 magnetic QD barcodes was constructed based on Fe3O4/TiO2 MNPs and CdSe/ZnS QDs. Moreover, the magnetic QD barcodes showed high sensitivity for the multiplex detection of four tumor markers, cancer antigen 125 (CA125), cancer antigen 199 (CA199), alpha-fetoprotein (AFP), and neuron specific enolase (NSE) with detection limits of 0.89 KU/L, 0.72 KU/L, 0.05 ng/mL, and 0.15 ng/mL, respectively. This bifunctional magnetic QD barcodes are promising for automatic high-sensitivity multiplex bioassay.


Asunto(s)
Técnicas Biosensibles , Puntos Cuánticos , Biomarcadores de Tumor , Fenómenos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA