Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Cancer Res ; 14(23): 7691-700, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19047095

RESUMEN

PURPOSE: Cannabinoids have been recently proposed as a new family of potential antitumor agents. The present study was undertaken to investigate the expression of the two cannabinoid receptors, CB1 and CB2, in colorectal cancer and to provide new insight into the molecular pathways underlying the apoptotic activity induced by their activation. EXPERIMENTAL DESIGN: Cannabinoid receptor expression was investigated in both human cancer specimens and in the DLD-1 and HT29 colon cancer cell lines. The effects of the CB1 agonist arachinodyl-2'-chloroethylamide and the CB2 agonist N-cyclopentyl-7-methyl-1-(2-morpholin-4-ylethyl)-1,8-naphthyridin-4(1H)-on-3-carboxamide (CB13) on tumor cell apoptosis and ceramide and tumor necrosis factor (TNF)-alpha production were evaluated. The knockdown of TNF-alpha mRNA was obtained with the use of selective small interfering RNA. RESULTS: We show that the CB1 receptor was mainly expressed in human normal colonic epithelium whereas tumor tissue was strongly positive for the CB2 receptor. The activation of the CB1 and, more efficiently, of the CB2 receptors induced apoptosis and increased ceramide levels in the DLD-1 and HT29 cells. Apoptosis was prevented by the pharmacologic inhibition of ceramide de novo synthesis. The CB2 agonist CB13 also reduced the growth of DLD-1 cells in a mouse model of colon cancer. The knockdown of TNF-alpha mRNA abrogated the ceramide increase and, therefore, the apoptotic effect induced by cannabinoid receptor activation. CONCLUSIONS: The present study shows that either CB1 or CB2 receptor activation induces apoptosis through ceramide de novo synthesis in colon cancer cells. Our data unveiled, for the first time, that TNF-alpha acts as a link between cannabinoid receptor activation and ceramide production.


Asunto(s)
Ceramidas/biosíntesis , Neoplasias del Colon/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apoptosis/fisiología , Western Blotting , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Ratones , Ratones Desnudos , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
2.
J Gerontol A Biol Sci Med Sci ; 72(9): 1187-1195, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28329136

RESUMEN

Cellular senescence is related to organismal aging and is observed after DNA damaging cancer therapies, that induce tumor-suppressive modifications, but it is characterized by a strong increase in secreted factors, termed the "senescence-associated secretory phenotype" (SASP). Particularly, SASP from stroma senescent fibroblasts creates a cancer-favoring microenvironment, providing targets for anti-cancer interventions. In the present article, chronic treatment (5 weeks) with 5 µM resveratrol has been used to modulate senescence-related protumoral features of MRC5 fibroblasts, reducing SASP-related interleukins IL1α, IL1ß, IL6, and IL8; transforming-growth-factor-ß (TGFß); matrix metallo-proteinases MMP3 and MMP2; urokinase plasminogen activator (uPA); receptor proteins uPAR, IL6R, insulin growth factor receptor-1 (IGF-1R), TGFß-R2, and CXCR4. The cellular nuclear-factor-kB (NF-kB) protein level was also reduced, confirming its role in the induction of SASP. Resveratrol pretreated MRC5 fibroblasts were resistant to activation by TGFß. Resveratrol treatment of senescent MRC5 induced the production of conditioned media (CM) which counteracted the protumoral effect of senescent CM on A375 and A375-M6 melanoma cell proliferation and invasiveness, and reduced the expression of epithelial-to-mesenchymal transition markers related to malignant features. This experimental approach proposes a treatment that targets the senescent stromal cell phenotype to induce an anti-tumor hosting microenvironment, which is suitable for both preventive and therapeutic purposes.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Melanoma/tratamiento farmacológico , Estilbenos/farmacología , Células Tumorales Cultivadas/efectos de los fármacos , Animales , Biomarcadores de Tumor/metabolismo , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados , Humanos , Interleucinas/metabolismo , Ratones , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Resveratrol , Microambiente Tumoral
3.
Vasc Cell ; 3(1): 12, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21595892

RESUMEN

BACKGROUND: Poly(ADP-Ribose) polymerase (PARP) activity has been demonstrated fundamental in many cellular processes, including DNA repair, cell proliferation and differentiation. In particular, PARP activity has been recently found to affect proliferation, migration, and tube formation of human umbilical vein endothelial cells. In recent times, PARP inhibitors have entered in clinical trials to potentiate cancer treatments by preventing DNA repair, but little is known about the effects performed by different drug concentrations on neoangiogenesis, an essential step in tumor growth. METHODS: Human umbilical vein endothelial cells were treated with 3 aminobenzamide (3ABA), a PARP inhibitor, and tested for several different cellular parameters. RESULTS: Here we present in vitro evidence that a low concentration of 3ABA (50 µM), stimulates angiogenesis by decreasing fibrinolytic activity, carried out by urokinase-type plasminogen activator (uPA), and by enhancing matrix metalloprotease-2 (MMP-2) gelatinolytic activity, in fibroblast growth factor-2-stimulated endothelial cells. These unbalanced pathways modify in vitro angiogenic steps, inhibiting chemoinvasion and stimulating tubulogenic activity. CONCLUSIONS: Our results suggest that the proangiogenic effect of low concentrations of 3ABA alerts on the efficacy of PARP inhibitors to potentiate anticancer therapy. Moreover, they indicate that endothelial chemoinvasion and tubulogenesis depend on distinct proteolytic pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA