Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38942699

RESUMEN

Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence, but how to achieve this fantastic and challenging objective remains elusive. Here, we propose a feasible pathway to address this paramount pursuit by developing universal materials models of deep-learning density functional theory Hamiltonian (DeepH), enabling computational modeling of the complicated structure-property relationship of materials in general. By constructing a large materials database and substantially improving the DeepH method, we obtain a universal materials model of DeepH capable of handling diverse elemental compositions and material structures, achieving remarkable accuracy in predicting material properties. We further showcase a promising application of fine-tuning universal materials models for enhancing specific materials models. This work not only demonstrates the concept of DeepH's universal materials model but also lays the groundwork for developing large materials models, opening up significant opportunities for advancing artificial intelligence-driven materials discovery.

2.
Light Sci Appl ; 10(1): 30, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542176

RESUMEN

Nonreciprocity is important in both optical information processing and topological photonics studies. Conventional principles for realizing nonreciprocity rely on magnetic fields, spatiotemporal modulation, or nonlinearity. Here we propose a generic principle for generating nonreciprocity by taking advantage of energy loss, which is usually regarded as harmful. The loss in a resonance mode induces a phase lag, which is independent of the energy transmission direction. When multichannel lossy resonance modes are combined, the resulting interference gives rise to nonreciprocity, with different coupling strengths for the forward and backward directions, and unidirectional energy transmission. This study opens a new avenue for the design of nonreciprocal devices without stringent requirements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA