Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 499-512, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38439665

RESUMEN

Osteoarthritis (OA) is the most common joint disease, and good therapeutic results are often difficult to obtain due to its complex pathogenesis and diverse causative factors. After decades of research and exploration of OA, it has been progressively found that subchondral bone is essential for its pathogenesis, and pathological changes in subchondral bone can be observed even before cartilage lesions develop. Osteoclasts, the main cells regulating bone resorption, play a crucial role in the pathogenesis of subchondral bone. Subchondral osteoclasts regulate the homeostasis of subchondral bone through the secretion of degradative enzymes, immunomodulation, and cell signaling pathways. In OA, osteoclasts are overactivated by autophagy, ncRNAs, and Rankl/Rank/OPG signaling pathways. Excessive bone resorption disrupts the balance of bone remodeling, leading to increased subchondral bone loss, decreased bone mineral density and consequent structural damage to articular cartilage and joint pain. With increased understanding of bone biology and targeted therapies, researchers have found that the activity and function of subchondral osteoclasts are affected by multiple pathways. In this review, we summarize the roles and mechanisms of subchondral osteoclasts in OA, enumerate the latest advances in subchondral osteoclast-targeted therapy for OA, and look forward to the future trends of subchondral osteoclast-targeted therapies in clinical applications to fill the gaps in the current knowledge of OA treatment and to develop new therapeutic strategies.


Asunto(s)
Resorción Ósea , Cartílago Articular , Osteoartritis , Humanos , Osteoclastos/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Resorción Ósea/metabolismo , Remodelación Ósea/fisiología , Cartílago Articular/metabolismo
2.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 82-95, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38013468

RESUMEN

Osteoarthritis (OA) is a prevalent and chronic joint disease that affects the aging population, causing pain and disability. Macrophages in synovium are important mediators of synovial inflammatory activity and pathological joint pain. Previous studies have demonstrated the significant involvement of κ-opioid receptor (KOR) in the regulation of pain and inflammation. Our study reveals a significant reduction in synovial KOR expression among patients and mice with OA. Here, we find that KOR activation effectively inhibits the expressions of the LPS-induced-inflammatory cytokines TNF-α and IL-6 by inhibiting macrophage M1 phenotype. Mechanistically, KOR activation effectively suppresses the proinflammatory factor secretion of macrophages by inhibiting the translocation of NF-κB into the nucleus. Our animal experiments reveal that activation of KOR effectively alleviates knee pain and prevents synovitis progression in OA mice. Consistently, KOR administration suppresses the expressions of M1 macrophage markers and the NF-κB pathway in the synovium of the knee. Collectively, our study suggests that targeting KOR may be a viable strategy for treating OA by inhibiting synovitis and improving joint pain in affected patients.


Asunto(s)
Osteoartritis , Receptores Opioides kappa , Sinovitis , Anciano , Animales , Humanos , Ratones , Artralgia/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Osteoartritis/metabolismo , Dolor/metabolismo , Receptores Opioides kappa/metabolismo , Sinovitis/metabolismo
3.
Pharmacol Res ; 174: 105967, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34740817

RESUMEN

Osteoporosis (OP) is characterized by decreased trabecular bone volume and microarchitectural deterioration in the medullary cavity. Urolithin A (UA) is a biologically active metabolite generated by the gut microbiota. UA is the measurable product considered the most relevant urolithin as the final metabolic product of polyphenolic compounds. Considering that catabolic effects mediated by the intestinal microbiota are highly involved in pathological bone disorders, exploring the biological influence and molecular mechanisms by which UA alleviates OP is crucial. Our study aimed to investigate the effect of UA administration on OP progression in the context of estrogen deficiency-induced bone loss. The in vivo results indicated that UA effectively reduced ovariectomy-induced systemic bone loss. In vitro, UA suppressed Receptor Activator for Nuclear Factor-κB Ligand (RANKL)-triggered osteoclastogenesis in a concentration-dependent manner. Signal transduction studies and sequencing analysis showed that UA significantly decreased the expression of inflammatory cytokines (e.g., IL-6 and TNF-α) in osteoclasts. Additionally, attenuation of inflammatory signaling cascades inhibited the NF-κB-activated NOD-like receptor signaling pathway, which eventually led to decreased cytoplasmic secretion of IL-1ß and IL-18 and reduced expression of pyroptosis markers (NLRP3, GSDMD, and caspase-1). Consistent with this finding, an NLRP3 inflammasome inhibitor (MCC950) was employed to treat OP, and modulation of pyroptosis was found to ameliorate osteoclastogenesis and bone loss in ovariectomized (OVX) mice, suggesting that UA suppressed osteoclast formation by regulating the inflammatory signal-dependent pyroptosis pathway. Conceivably, UA administration may be a safe and promising therapeutic strategy for osteoclast-related bone diseases such as OP.


Asunto(s)
Antiinflamatorios/uso terapéutico , Cumarinas/uso terapéutico , Osteoporosis Posmenopáusica/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Catepsina K/genética , Catepsina K/metabolismo , Supervivencia Celular/efectos de los fármacos , Cumarinas/farmacología , Citocinas/genética , Citocinas/metabolismo , Femenino , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/antagonistas & inhibidores , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/metabolismo , Piroptosis/efectos de los fármacos , Ligando RANK/genética , Ligando RANK/farmacología , Células RAW 264.7 , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos
4.
Bioorg Chem ; 113: 104978, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34052737

RESUMEN

Osteoarthritis (OA) is a chronic disease featured by joint hyperplasia, deterioration of articular cartilage, and progressive degeneration. Abnormal expression of microRNAs (miRNAs) has been found to be implicated in the pathological process of OA. In this study, the role of miR-361-5p transferred by exosomes derived from human bone mesenchymal stem cells (hBMSCs) in OA was investigated. The expression of Asp-Glu-Ala-Asp-box polypeptide 20 (DDX20) and miR-361-5p in interleukin-1ß (IL-1ß)-treated chondrocytes was determined by reverse transcription quantitative polymerase chain reaction. DDX20 was knocked down by transfection of short hairpin RNA targeting DDX20, and the effects of DDX20 downregulation on IL-1ß-induced damage of chondrocytes were detected. The interaction between DDX20 and miR-361-5p was tested by luciferase report assay. hBMSCs-derived exosomes loaded with miR-361-5p were co-incubated with chondrocytes followed by detection of cell viability, proliferation and inflammatory response. An OA rat model was established to further explore the role of miR-361-5p in vivo. Western blot, luciferase reporter and immunofluorescence staining assays were used to evaluate the activation of the nuclear factor kappa-B (NF-κB) signaling pathway. We found that DDX20 was upregulated, while miR-361-5p was underexpressed in IL-1ß-treated chondrocytes. Downregulation of DDX20 inhibits levels of matrix metalloproteinases (MMPs) and suppresses inflammation induced by IL-1ß. Mechanistically, miR-361-5p was verified to directly target DDX20. In addition, hBMSC-derived exosomes-transferred miR-361-5p alleviates chondrocyte damage and inhibits the NF-κB signaling pathway via targeting DDX20. Inhibition of NF-κB signaling reverses the effect of overexpressed DDX20 on IL-1ß-induced chondrocyte damage. Moreover, exosomal miR-361-5p alleviates OA damage in vivo. Overall, hBMSC-derived exosomal miR-361-5p alleviates OA damage by targeting DDX20 and inactivating the NF-κB signaling pathway.


Asunto(s)
Proteína 20 DEAD-Box/metabolismo , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Osteoartritis/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , MicroARNs/genética , Ratas , Ratas Wistar , Transducción de Señal
5.
Acta Biochim Biophys Sin (Shanghai) ; 52(10): 1055-1062, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33085739

RESUMEN

Accumulating evidence indicates that intracellular reactive oxygen species (ROS) production is highly involved in bone homeostasis by intervening osteoclast or osteoblast differentiation. Interestingly, ROS that are known as oxidizing agents exert dose-dependent biphasic properties in bone remodeling, including preventing osteoblast activity but accelerating osteoclast resorption. ROS mainly composed of superoxide anion radical, hydroxyl radical, nitric oxide, and two-electron reduction product hydrogen peroxide, which are important components to regulate bone cell metabolism and function in mammal skeleton. These free radicals can be partly produced in bone and boosted in an inflammation state. Although numerous researches have emphasized the impacts of ROS on bone cell biology and verified the mechanism of ROS signaling cascades, the recapitulatory commentary is necessary. In this review article, we particularly focus on the regulation of the intracellular ROS and its potential mechanism impacting on cell-signaling transduction in osteoclast and osteoblast differentiation for preferable understanding the pathogenesis and searching for novel therapeutic protocols for human bone diseases.


Asunto(s)
Osteoblastos/metabolismo , Osteoclastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Resorción Ósea/metabolismo , Resorción Ósea/fisiopatología , Depuradores de Radicales Libres , Humanos
6.
Gene ; 893: 147914, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37865148

RESUMEN

OBJECTIVE: For identification of aberrantly expressed genes in mesenchymal stem cells of osteoporosis (OP) and osteoarthritis (OA), Gene Expression Omnibus (GEO) datasets were integrated to investigate the intersection point. METHODS: GSE35958 (osteoporosis) and GSE19664 (osteoarthritis) datasets were obtained from GEO database. The abnormally expressed genes were analyzed by GEO2R. Functional enrichment was explored by Metascape database and R software. The String database and Cytoscape software were used to build the protein-protein interaction network and identify hub genes. GSE35957 and GSE116925 were used as verification datasets. Single-cell analysis and pseudotime analysis were undertaken. CTDbase, Network Analyst, HPA database, HERB database and MIRW database were used to research the information, tissue and cell distribution, regulation, interaction and ingredients targeting the hub genes. Additionally, in vitro experiments such as RT-PCR, ALP staining and immunofluorescence were undertaken as verification tests. RESULTS: Ten hub genes were identified in this study. All these genes play an important role in bone or cartilage generation. They have diagnostic values and therapeutic potential for OA and OP. Single-cell analysis visualized the cell distribution and pseudotime distribution of these genes. Some potential therapeutic ingredients of these genes were identified, such as curcumin, wogonin and glycerin. In vitro experiments, RT-PCR results showed that COL9A3 and MMP3 were downregulated and PTH1R was upregulated during osteogenic induction of BMSC. Immunohistochemical results showed the expression trend of MMP3 and COL2A1. CONCLUSION: Ten abnormal hub genes of osteoporosis and osteoarthritis were identified successfully by this study. They were important regulatory genes for healthy bone and cartilage. These genes could be the common connections between osteoporosis and osteoarthritis as well as treatment targets. Further study of the regulatory mechanism and treatment effects of these genes would be valuable. The results of this study could contribute to further research.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Osteoporosis , Humanos , Redes Reguladoras de Genes , Metaloproteinasa 3 de la Matriz/genética , Perfilación de la Expresión Génica/métodos , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoporosis/genética , Osteoporosis/metabolismo , Células Madre Mesenquimatosas/metabolismo , Biología Computacional/métodos
7.
Regen Biomater ; 11: rbad092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173778

RESUMEN

Aseptic loosening (AL) is considered a significant cause of prosthesis revision after arthroplasty and a crucial factor in the longevity of an artificial joint prosthesis. The development of AL is primarily attributed to a series of biological reactions, such as peri-prosthetic osteolysis (PPO) induced by wear particles around the prosthesis. Chronic inflammation of the peri-prosthetic border tissue and hyperactivation of osteoclasts are key factors in this process, which are induced by metallic wear particles like Ti particles (TiPs). In our in vitro study, we observed that TiPs significantly enhanced the expression of inflammation-related genes, including COX-2, IL-1ß and IL-6. Through screening a traditional Chinese medicine database, we identified byakangelicol, a traditional Chinese medicine molecule that targets COX-2. Our results demonstrated that byakangelicol effectively inhibited TiPs-stimulated osteoclast activation. Mechanistically, we found that byakangelicol suppressed the expression of COX-2 and related pro-inflammatory factors by modulating macrophage polarization status and NF-κB signaling pathway. The in vivo results also demonstrated that byakangelicol effectively inhibited the expression of inflammation-related factors, thereby significantly alleviating TiPs-induced cranial osteolysis. These findings suggested that byakangelicol could potentially be a promising therapeutic approach for preventing PPO.

8.
Arthritis Res Ther ; 26(1): 20, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218854

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is a degenerative joint disease that affects elderly populations worldwide, causing pain and disability. Alteration of the fibroblast-like synoviocytes (FLSs) phenotype leads to an imbalance in the synovial inflammatory microenvironment, which accelerates the progression of OA. Despite this knowledge, the specific molecular mechanisms of the synovium that affect OA are still unclear. METHODS: Both in vitro and in vivo experiments were undertaken to explore the role of ADAM8 playing in the synovial inflammatory of OA. A small interfering RNA (siRNA) was targeting ADAM8 to intervene. High-throughput sequencing was also used. RESULTS: Our sequencing analysis revealed significant upregulation of the MAPK signaling cascade and ADAM8 gene expression in IL-1ß-induced FLSs. The in vitro results demonstrated that ADAM8 blockade inhibited the invasion and migration of IL-1ß-induced FLSs, while also suppressing the expression of related matrix metallomatrix proteinases (MMPs). Furthermore, our study revealed that inhibiting ADAM8 weakened the inflammatory protein secretion and MAPK signaling networks in FLSs. Mechanically, it revealed that inhibiting ADAM8 had a significant effect on the expression of migration-related signaling proteins, specifically FSCN1. When siADAM8 was combined with BDP-13176, a FSCN1 inhibitor, the migration and invasion of FLSs was further inhibited. These results suggest that FSCN1 is a crucial downstream factor of ADAM8 in regulating the biological phenotypes of FLSs. The in vivo experiments demonstrated that ADAM8 inhibition effectively reduced synoviocytes inflammation and alleviated the progression of OA in rats. CONCLUSIONS: ADAM8 could be a promising therapeutic target for treating OA by targeting synovial inflammation.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Sinoviocitos , Anciano , Animales , Humanos , Ratas , Proteínas ADAM/metabolismo , Proteínas ADAM/farmacología , Artritis Reumatoide/metabolismo , Proteínas Portadoras/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Fibroblastos/metabolismo , Inflamación/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , ARN Interferente Pequeño/metabolismo , Sinoviocitos/metabolismo
9.
Free Radic Biol Med ; 212: 403-414, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38171408

RESUMEN

Bone remodeling is essential for the repair and replacement of damaged or aging bones. Continuous remodeling is necessary to prevent the accumulation of bone damage and to maintain bone strength and calcium balance. As bones age, the coupling mechanism between bone formation and absorption becomes dysregulated, and bone loss becomes dominant. Bone development and repair rely on interaction and communication between osteoclasts and surrounding cells. Osteoclasts are specialized cells that are accountable for bone resorption and degradation, and any abnormalities in their activity can result in notable alterations in bone structure and worsen disease symptoms. Recent findings from transgenic mouse models and bone analysis have greatly enhanced our understanding of the origin, differentiation pathway, and activation stages of osteoclasts. In this review, we explore osteoclasts and discuss the cellular and molecular events that drive their generation, focusing on intracellular oxidative and antioxidant signaling. This knowledge can help develop targeted therapies for diseases associated with osteoclast activation.


Asunto(s)
Resorción Ósea , Osteoclastos , Ratones , Animales , Osteoclastos/metabolismo , Antioxidantes/metabolismo , Resorción Ósea/genética , Resorción Ósea/metabolismo , Huesos/metabolismo , Diferenciación Celular , Ratones Transgénicos , Oxidación-Reducción
10.
J Zhejiang Univ Sci B ; 25(6): 513-528, 2024 Jun 15.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38910496

RESUMEN

Osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However, the specific mechanism of osteoclast differentiation in OA remains unclear. In our study, gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carcinogenesis, reactive oxygen species (ROS), and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore, fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene, heme oxygenase 1 (HMOX1), was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of HMOX1. Carnosol was revealed to inhibit osteoclastogenesis by targeting HMOX1 and upregulating the expression of antioxidant protein in vitro. Meanwhile, carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting HMOX1 in subchondral osteoclasts may offer novel insights for the treatment of early OA.


Asunto(s)
Hemo-Oxigenasa 1 , Osteoartritis , Osteoclastos , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Osteoartritis/patología , Osteoartritis/metabolismo , Osteoartritis/genética , Osteoclastos/metabolismo , Humanos , Animales , Estrés Oxidativo , Diferenciación Celular , Osteogénesis , Masculino , Ratones , Especies Reactivas de Oxígeno/metabolismo
11.
Polymers (Basel) ; 15(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37112012

RESUMEN

In recent years, expanded polystyrene (EPS) lightweight soil has been widely used as subgrade in soft soil areas because of its light weight and environmental protection. This study aimed to investigate the dynamic characteristics of sodium silicate modified lime and fly ash treated EPS lightweight soil (SLS) under cyclic loading. The effects of EPS particles on the dynamic elastic modulus (Ed) and damping ratio (λ) of SLS were determined through dynamic triaxial tests at various confining pressures (σ3), amplitudes, and cycle times. Mathematical models of the Ed of the SLS, cycle times, and σ3 were established. The results revealed that the EPS particle content played a decisive role in the Ed and λ of the SLS. The Ed of the SLS decreased with an increase in the EPS particle content (EC). The Ed decreased by 60% in the 1-1.5% range of the EC. The existing forms of lime fly ash soil and EPS particles in the SLS changed from parallel to series. With an increase in σ3 and amplitude, the Ed of the SLS gradually decreased, the λ generally decreased, and the λ variation range was within 0.5%. With an increase in the number of cycles, the Ed of the SLS decreased. The Ed value and the number of cycles satisfied the power function relationship. Additionally, it can be found from the test results that 0.5% to 1% was the best EPS content for SLS in this work. In addition, the dynamic elastic modulus prediction model established in this study can better describe the varying trend of the dynamic elastic modulus of SLS under different σ3 values and load cycles, thereby providing a theoretical reference for the application of SLS in practical road engineering.

12.
Aging Dis ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37815897

RESUMEN

Maintenance of mitochondrial homeostasis is crucial for ensuring healthy mitochondria and normal cellular function. This process is primarily responsible for regulating processes that include mitochondrial OXPHOS, which generates ATP, as well as mitochondrial oxidative stress, apoptosis, calcium homeostasis, and mitophagy. Bone mesenchymal stem cells express factors that aid in bone formation and vascular growth. Positive regulation of hematopoietic stem cells in the bone marrow affects the differentiation of osteoclasts. Furthermore, the metabolic regulation of cells that play fundamental roles in various regions of the bone, as well as interactions within the bone microenvironment, actively participates in regulating bone integrity and aging. The maintenance of cellular homeostasis is dependent on the regulation of intracellular organelles, thus understanding the impact of mitochondrial functional changes on overall bone metabolism is crucially important. Recent studies have revealed that mitochondrial homeostasis can lead to morphological and functional abnormalities in senescent cells, particularly in the context of bone diseases. Mitochondrial dysfunction in skeletal diseases results in abnormal metabolism of bone-associated cells and a secondary dysregulated microenvironment within bone tissue. This imbalance in the oxidative system and immune disruption in the bone microenvironment ultimately leads to bone dysplasia. In this review, we examine the latest developments in mitochondrial respiratory chain regulation and its impacts on maintenance of bone health. Specifically, we explored whether enhancing mitochondrial function can reduce the occurrence of bone cell deterioration and improve bone metabolism. These findings offer prospects for developing bone remodeling biology strategies to treat age-related degenerative diseases.

13.
Int Immunopharmacol ; 119: 110134, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37044038

RESUMEN

As a common joint disease, osteoarthritis (OA) is often associated with chronic pain. Synovial inflammation is correlated with OA progression and pain. Synovial inflammation can produce a series of destructive substances, such as inflammatory factors and pain mediators, which aggravate cartilage injury and further accelerate the progression of OA. Although many studies investigated the effects of synovial inflammation on the onset and progression of OA, there are limited reports regarding slowing the progression of OA and relieving pain by modulating synovial inflammation. Therefore, there is an urgent need to search for safe and effective drugs to alleviate synovial inflammation. Dexmedetomidine, a selective α2 agonist, has been shown to have anti-inflammatory and analgesic effects. However, its role and mechanism in OA remain unclear. Here, the effects and mechanisms of dexmedetomidine in OA synovial inflammation were investigated both in vivo and in vitro. We observed that dexmedetomidine stunted LPS-induced migration and invasion of FLSs and the expression of inflammatory factors by upregulating cannabinoid receptor type 2 (CB2) expression. Surprisingly, the application of AM630 (CB2 antagonist) reversed this therapeutic effect. The results of the animal experiments showed that dexmedetomidine reduced synovial inflammation and increased the pain threshold in an OA rat model. These preliminary results imply that dexmedetomidine may be an effective compound for OA treatment.


Asunto(s)
Dexmedetomidina , Osteoartritis , Ratas , Animales , Dexmedetomidina/uso terapéutico , Membrana Sinovial/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Dolor/tratamiento farmacológico
14.
Cell Death Discov ; 9(1): 461, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104087

RESUMEN

Periprosthetic osteolysis (PPO) induced by wear particles at the interface between the prosthesis and bone is a crucial issue of periprosthetic bone loss and implant failure. After wear and tear, granular material accumulates around the joint prosthesis, causing a chronic inflammatory response, progressive osteoclast activation and eventual loosening of the prosthesis. Although many studies have been conducted to address bone loss after joint replacement surgeries, they have not fully addressed these issues. Focusing on osteoclast activation induced by particles has important theoretical implications. Cannabinoid type II receptor (CB2) is a seven-transmembrane receptor that is predominantly distributed in the human immune system and has been revealed to be highly expressed in bone-associated cells. Previous studies have shown that modulation of CB2 has a positive effect on bone metabolism. However, the exact mechanism has not yet been elucidated. In our experiments, we found that NOX1-mediated ROS accumulation was involved in titanium particle-stimulated osteoclast differentiation. Furthermore, we confirmed that CB2 blockade alleviated titanium particle-stimulated osteoclast activation by inhibiting the NOX1-mediated oxidative stress pathway. In animal experiments, downregulation of CB2 alleviated the occurrence of titanium particle-induced cranial osteolysis by inhibiting osteoclasts and scavenging intracellular ROS. Collectively, our results suggest that CB2 blockade may be an attractive and promising therapeutic scheme for particle-stimulated osteoclast differentiation and preventing PPO.

15.
Elife ; 122023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37929702

RESUMEN

Rheumatoid arthritis (RA) is characterized by joint synovitis and bone destruction, the etiology of which remains to be explored. Many types of cells are involved in the progression of RA joint inflammation, among which the overactivation of M1 macrophages and osteoclasts has been thought to be an essential cause of joint inflammation and bone destruction. Glioma-associated oncogene homolog 1 (GLI1) has been revealed to be closely linked to bone metabolism. In this study, GLI1 expression in the synovial tissue of RA patients was positively correlated with RA-related scores and was highly expressed in collagen-induced arthritis (CIA) mouse articular macrophage-like cells. The decreased expression and inhibition of nuclear transfer of GLI1 downregulated macrophage M1 polarization and osteoclast activation, the effect of which was achieved by modulation of DNA methyltransferases (DNMTs) via transcriptional regulation and protein interactions. By pharmacological inhibition of GLI1, the proportion of proinflammatory macrophages and the number of osteoclasts were significantly reduced, and the joint inflammatory response and bone destruction in CIA mice were alleviated. This study clarified the mechanism of GLI1 in macrophage phenotypic changes and activation of osteoclasts, suggesting potential applications of GLI1 inhibitors in the clinical treatment of RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Osteólisis , Proteína con Dedos de Zinc GLI1 , Animales , Humanos , Ratones , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , ADN/metabolismo , Inflamación/metabolismo , Metiltransferasas/metabolismo , Osteoclastos/metabolismo , Osteólisis/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
16.
Free Radic Biol Med ; 208: 13-25, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37516370

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage injury, hyperplasia of bone and inflammatory lesions of synovium. Monoacylglycerol lipase (MAGL), a member of the α/ß hydrolase superfamily, is involved in regulation of injury protection and immune-inflammation response. Autoinflammatory response of the synovium and the release of inflammatory mediators play critical roles in occurrence of early-stage OA. Fibroblast-like synoviocytes (FLSs) are resident mesenchymal cells of the synovial tissue. Considering that MAGL inhibition regulates the inflammatory signaling cascade, it is crucial to ascertain the biological effects and specific mechanisms of MAGL in alleviating inflammatory infiltration of OA FLSs. The aim of this study was to investigate the effect of MAGL on biological function in OA FLSs. Results from in vitro experiments showed that MAGL blockade not only effectively inhibited proliferation, invasion and migration of FLSs, but also downregulated expression of inflammatory-associated proteins. Sequencing results indicated that MAGL inhibition significantly suppressed NOX4-mediated oxidative stress, thus promoting Nrf2 nuclear accumulation and inhibiting generation of intracellular reactive oxygen species (ROS). Attenuation of NOX4 further alleviated redox dysplasia and ultimately improved tumor-like phenotypes, such as abnormal proliferation, migration and migration of FLSs. In vivo results corroborated this finding, with MAGL inhibition found to modulate pain and disease progression in an OA rat model. Collectively, these results indicate that MAGL administration is an ideal therapy treating OA.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Ratas , Animales , Artritis Reumatoide/metabolismo , Monoacilglicerol Lipasas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Osteoartritis/metabolismo , Inflamación/metabolismo , Oxidación-Reducción , Dolor/metabolismo , Dolor/patología , Fibroblastos/metabolismo , Células Cultivadas
17.
Environ Technol ; 43(27): 4330-4340, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34180772

RESUMEN

Perchlorate (ClO4-) industrial wastewater requires efficient removal to prevent adverse environmental impacts, however, high concentration and low biodegradability give rise to poor ClO4- bioreduction performance. S2--autotrophic granular sludge (S2--AuGS) was firstly cultivated for high concentration perchlorate (ClO4-) removal in the upflow anaerobic sludge blanket (UASB) reactor (ClO4-: 150 mg L-1). Simultaneously, the S2- was utilized to control the SO42- generation as electron donor, the effluent SO42- concentration (190 mg L-1) was satisfied with drinking water standard (250 mg L-1). Under the optimized condition of hydraulic retention time (HRT) (6 h) and S2-/ClO4- molar ratio (2.2), more EPS was secreted, which promoted the S2--AuGS formation and stability. Though acclimation of 146 d, the S2--AuGS was formed with a large average granular sludge size (612 µm) and an excellent settleability (sludge volume index: SVI5/SVI30 = 1). With the mature S2--AuGS formation, the highest ClO4- and S2- loading was increased to 1.06 and 0.75 kg m-3 d-1. Interestingly, Georgfuchsia, Methyloversatilis, Sulfurisoma, and Exiguobacterium were the main microbial community in the S2--AuGS. This study proposed to form a novel S2--AuGS for developing the high ClO4- concentration removal performance and to utilize the S2- as an electron donor for controlling the excessive SO42- generation.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Reactores Biológicos/microbiología , Anaerobiosis , Sulfatos , Percloratos
18.
Bioact Mater ; 8: 309-324, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34541403

RESUMEN

Polyetheretherketone (PEEK) has been widely used as orthopedic and dental materials due to excellent mechanical and physicochemical tolerance. However, its biological inertness, poor osteoinduction, and weak antibacterial activity make the clinical applications in a dilemma. Inspired by the mussel adhesion mechanism, here we reported a biomimetic surface strategy for rational integration and optimization of anti-infectivity and osteo-inductivity onto PEEK surfaces using a mussel foot proteins (Mfps)-mimic peptide with clickable azido terminal. The peptide enables mussel-like adhesion on PEEK biomaterial surfaces, leaving azido groups for the further steps of biofunctionalizations. In this study, antimicrobial peptide (AMP) and osteogenic growth peptide (OGP) were bioorthogonally clicked on the azido-modified PEEK biomaterials to obtain a dual-effect of host defense and tissue repair. Since bioorthogonal clicking allows precise collocation between AMP and OGP through changing their feeding molar ratios, an optimal PEEK surface was finally obtained in this research, which could long-term inhibit bacterial growth, stabilize bone homeostasis and facilitate interfacial bone regeneration. In a word, this upgraded mussel surface strategy proposed in this study is promising for the surface bioengineering of inert medical implants, in particular, achieving rational integration of multiple biofunctions to match clinical requirements.

19.
J Colloid Interface Sci ; 605: 410-424, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34332414

RESUMEN

In the inflammatory peri-implant microenvironment, excessive polarization of macrophages to the proinflammatory M1 phenotype can trigger the secretion of inflammatory cytokines, which promote bone resorption and impede osteogenesis around implants. The direct consequence of this process is the failure of prosthetic implants due to aseptic loosening. To reverse the inflammatory microenvironment and prevent prosthesis loosening, a mussel adhesion-inspired surface strategy was used for bioengineering of titanium implants with integrin-binding ability. In our design, a mussel-inspired catecholic peptide with tetravalent 3,4-dihydroxy-l-phenylalanine (DOPA) and Arg-Gly-Asp (RGD) sequences was synthesized. The peptide can easily anchor to the surface of medical titanium materials through a mussel adhesive mechanism. We found that peptide-decorated titanium implants could effectively inhibit peri-implant inflammation in a wear particle model and could promote the polarization of macrophages to a pro-healing M2 phenotype by interfering with integrin-α2ß1 and integrin-αvß3. Moreover, the peptide coating increased the adherence of osteoblasts and promoted osteogenesis on titanium implants even under inflammatory conditions. This work suggested that this biomimetic catecholic integrin-binding peptide can provide facile tactics for surface bioengineering of medical prostheses with improved interfacial osteogenesis under inflammatory conditions, which might contribute greatly to the prevention of prosthesis loosening and the improvement of clinical outcomes.


Asunto(s)
Osteogénesis , Titanio , Humanos , Inflamación/etiología , Péptidos , Prótesis e Implantes
20.
Sci China Life Sci ; 65(3): 588-603, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34125371

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease that eventually leads to disability. Inflammatory cell infiltration, severe joint breaking and systemic bone loss are the main clinical symptoms. In this study, we established a collagen-induced arthritis (CIA) model and found a large number of M1 macrophages and pyroptosis, which are important sources of proinflammatory cytokines. Punicalagin (PUN) is an active substance extracted from pomegranate peel. We found that it inhibited joint inflammation, cartilage damage and systemic bone destruction in CIA mice. PUN effectively alleviated the high expression of inflammatory cytokines in synovial tissue in vivo. PUN treatment shifted macrophages from the M1 phenotype to the M2 phenotype after stimulation with lipopolysaccharide (LPS) and interferon (IFN)-γ. The expression of inducible nitric oxide synthase (iNOS) and other proinflammatory cytokines released by M1 macrophages was decreased in the PUN treatment group. However, simultaneously, the expression of markers of anti-inflammatory M2 macrophages, such as arginase (Arg)-1 and interleukin (IL)-10, was increased. In addition, PUN treatment attenuated pyroptosis by downregulating the expression of NLRP3 and caspase-1, thereby preventing inflammatory cell death resulting from the release of IL-1ß and IL-18. Mechanistically, PUN inhibited the activation of receptor activators of the nuclear factor-κB (NF-κB) signaling pathway, which contributes to M1 polarization and pyroptosis of macrophages. We concluded that PUN ameliorated pathological inflammation by inhibiting M1 phenotype polarization and pyroptosis and has great potential as a therapeutic treatment for human RA.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Taninos Hidrolizables/farmacología , Macrófagos/efectos de los fármacos , FN-kappa B/fisiología , Piroptosis/efectos de los fármacos , Animales , Artritis Experimental/inmunología , Artritis Reumatoide/tratamiento farmacológico , Caspasa 1/fisiología , Células Cultivadas , Citocinas/análisis , Regulación hacia Abajo , Taninos Hidrolizables/uso terapéutico , Masculino , Ratones , Ratones Endogámicos DBA , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA