Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 17(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38793420

RESUMEN

Hydrogen, as a clean, safe, and efficient energy carrier, is one of the hot energy sources that have attracted much attention. Mo2C, due to the introduction of C atoms, makes the atomic spacing of the Mo lattice decrease and changes the width of the d-band, which makes the electronic properties of Mo2C similar to that of Pt noble metals, exhibiting excellent electrochemical hydrogen precipitation performance. MoS2, due to its special crystal structure and tunable electronic structure, has been widely studied. In this paper, Mo2C nanoparticles were prepared by high-temperature carbonization, and then two-dimensional layered MoS2 were be loaded on Mo2C nanoparticles by the hydrothermal method to synthesize Mo2C/MoS2 composite catalysts. Their electrochemical hydrogen precipitation (HER) performance under acidic conditions was tested. The above catalysts were also characterized by modern material testing methods such as XRD, SEM, TEM, and XPS. The results showed that the composite catalysts exhibited the most excellent electrochemical hydrogen precipitation performance at Mo2C/MoS2-3, with the lowest overpotential at a current density of 10 mA cm-2, Tafel slope, and electrochemical impedance. At the same time, the electrochemically active area was dramatically enhanced, with good stability under prolonged testing. The catalytic activity was significantly improved compared with that of Mo2C and MoS2. The characterization and experimental results indicate that the heterogeneous structure of Mo2C and MoS2 formed a built-in electric field between the two, which accelerated the electron transfer efficiency and provided more active sites. The Mo2C/MoS2 composite catalyst is a low-cost, easy-to-prepare, and high-efficiency electrochemical hydrogen precipitation catalyst, providing a new idea for developing green and clean energy.

2.
Materials (Basel) ; 17(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38894022

RESUMEN

LaFeO3 thin films were successfully epitaxially grown on single-crystalline SrTiO3 substrates by the one-step hydrothermal method at a temperature of 320 °C in a 10 mol/L KOH aqueous solution using La(NO3)3 and Fe(NO3)3 as the raw materials. The growth of the films was consistent with the island growth mode. Scanning electronic microscopy, elemental mapping, and atomic force microscopy demonstrate that the LaFeO3 thin films cover the SrTiO3 substrate thoroughly. The film subjected to hydrothermal treatment for 4 h exhibits a relatively smooth surface, with an average surface roughness of 10.1 nm. X-ray diffraction in conventional Bragg-Brentano mode shows that the LaFeO3 thin films show the same out-of-plane orientation as that of the substrate (i.e., (001)LaFeO3||(001)SrTiO3). The in-plane orientation of the films was analyzed by φ-scanning, revealing that the orientational relationship is [001]LaFeO3||[001]SrTiO3. The ω-rocking curve indicates that the prepared LaFeO3 films are of high quality with no significant mosaic defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA