Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Phytoremediation ; 26(6): 975-992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37968930

RESUMEN

The current study aims to use a facile and novel method to remove Congo red (CR) and Methyl Orange (MO) dyes from contaminated water with Maize offal biomass (MOB) and its nanocomposite with magnetic nanoparticles (MOB/MNPs). The MOB and MOB/MNPs were characterized with Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), BET, XRD and point of zero charge (pHPZC). The influence of initial CR and MO levels (20-320 mg/L), adsorbent dosage (1-3 g/L), pH (3-9), co-exiting ions, temperature (25-45 °C) and time (15-180 min) was estimated. The findings demonstrated that MOB/MNPs exhibited excellent adsorption of 114.75 and 29.0 mg/g for CR and MO dyes, respectively while MOB exhibited 81.35 and 23.02 mg/g adsorption for CR and MO dyes, respectively at optimum pH-5, and dose 2 g/L. Initially, there was rapid dye removal which slowed down until equilibrium was reached. The interfering/competing ions in contaminated water and elevated temperature favored the dyes sequestration. The MOB/MNPs exhibited tremendous reusability and stability. The dyes adsorption was spontaneous, and exothermic with enhanced randomness. The adsorption effects were well explained with Freundlich model, pseudo second order and Elovich models. It is concluded that MOB/MNPs showed excellent, eco-friendly, and cost-effective potential to decontaminate the water.


Nanocomposite of Maize offal biomass demonstrated higher dyes removal.FTIR, SEM, BET, XRD and pHPZC provided vital evidence for dyes adsorption.MOB/MNPs displayed excellent stability and reusability for dyes adsorption.Groundwater samples exposed a higher dyes removal.Results were validated with equilibrium and kinetic adsorption models.


Asunto(s)
Compuestos Azo , Nanocompuestos , Contaminantes Químicos del Agua , Rojo Congo , Colorantes/química , Zea mays , Biomasa , Biodegradación Ambiental , Adsorción , Iones , Agua , Nanocompuestos/química , Fenómenos Magnéticos , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
2.
Pak J Pharm Sci ; 31(5): 2017-2026, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30150203

RESUMEN

In 1993 miRNAs were discovered during a research on Caenorhabditis elegans conducted by Victor Ambros and Gary Ruvkun. The gene lin-4 that played important role in development in C. elgans was observed not encoding any protein but a very small RNA molecule of just 22 nucleotides. Main objective of this review is to highlight the significance of miRNAs in regulating the expression of many genes, which are either directly or indirectly involved in many diseases. One of the major causes of illness and death in developed countries of the world is cardiovascular disease. Some of the miRNAs have certain role to play in heart that are not specified for heart. So miRNAs have been found to be in other tissues like fibroblasts, endothelial cells and smooth muscle cells that are part of physiological study of cardiovascular system. Adult heart has limited capacity of regeneration therefore lost cardiomyocytes due to myocardial ischemia or infarction can result in low performance of heart. miRNAs have been shown to play a role in apoptotic regulation of cardiomyocytes in vivo. Many studies have shown that miR146a and 155 are up regulated in peripheral blood mononuclear cells, synovial fibroblasts, synovial fluid and Th-17 cells from rheumatoid arthritis patients as compared to healthy persons. Several types of miRNAs are playing important roles in type 1 diabetes mellitus including miR-375 and miR-375 with intolerance to glucose and decreased beta cells account due to impaired proliferation. Up regulation of miR-125a in WAT of type 2 Diabetes mellitus have been observed. miRNAs have proved to be the important regulators of cytokines and growth factor expression. Thus, suggested as a good biomarker and target of therapy. miRNA profiling techniques have revealed the role of miRNAs in Multiple sclerosis.


Asunto(s)
Terapia Genética/tendencias , MicroARNs/genética , MicroARNs/uso terapéutico , Artritis Reumatoide/genética , Artritis Reumatoide/terapia , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Terapia Genética/métodos , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA