Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999049

RESUMEN

Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors.


Asunto(s)
Proteínas Hedgehog , Simulación del Acoplamiento Molecular , Piridinas , Pirimidinas , Proteína con Dedos de Zinc GLI1 , Piridinas/farmacología , Piridinas/química , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Pirimidinas/farmacología , Pirimidinas/química , Proteínas Hedgehog/metabolismo , Humanos , Animales , Ratones , Línea Celular Tumoral , Células 3T3 NIH , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
2.
J Neurosci Res ; 100(8): 1585-1601, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35014067

RESUMEN

Ethanol exposure during the early stages of embryonic development can lead to a range of morphological and behavioral differences termed fetal alcohol spectrum disorders (FASDs). In a zebrafish model, we have shown that acute ethanol exposure at 8-10 hr postfertilization (hpf), a critical time of development, produces birth defects similar to those clinically characterized in FASD. Dysregulation of the Sonic hedgehog (Shh) pathway has been implicated as a molecular basis for many of the birth defects caused by prenatal alcohol exposure. We observed in zebrafish embryos that shh expression was significantly decreased by ethanol exposure at 8-10 hpf, while smo expression was much less affected. Treatment of zebrafish embryos with SAG or purmorphamine, small molecule Smoothened agonists that activate Shh signaling, ameliorated the severity of ethanol-induced developmental malformations including altered eye size and midline brain development. Furthermore, this rescue effect of Smo activation was dose dependent and occurred primarily when treatment was given after ethanol exposure. Markers of Shh signaling (gli1/2) and eye development (pax6a) were restored in embryos treated with SAG post-ethanol exposure. Since embryonic ethanol exposure has been shown to produce later-life neurobehavioral impairments, juvenile zebrafish were examined in the novel tank diving test. Our results further demonstrated that in zebrafish embryos exposed to ethanol, SAG treatment was able to mitigate long-term neurodevelopmental impairments related to anxiety and risk-taking behavior. Our results indicate that pharmacological activation of the Shh pathway at specific developmental timing markedly diminishes the severity of alcohol-induced birth defects.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Animales , Embrión no Mamífero/metabolismo , Etanol/toxicidad , Femenino , Trastornos del Espectro Alcohólico Fetal/tratamiento farmacológico , Trastornos del Espectro Alcohólico Fetal/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Embarazo , Pez Cebra/metabolismo
3.
Carcinogenesis ; 38(3): 252-260, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28426875

RESUMEN

Emerging evidence from epidemiological studies suggests a link between environmental chemical exposure and progression of aggressive breast cancer subtypes. Of all clinically distinct types of breast cancers, the most lethal phenotypic variant is inflammatory breast cancer (IBC). Overexpression of epidermal growth factor receptors (EGFR/HER2) along with estrogen receptor (ER) negativity is common in IBC tumor cells, which instead of a solid mass present as rapidly proliferating diffuse tumor cell clusters. Our previous studies have demonstrated a role of an adaptive response of increased antioxidants in acquired resistance to EGFR-targeting drugs in IBC. Environmental chemicals are known to induce oxidative stress resulting in perturbations in signal transduction pathways. It is therefore of interest to identify chemicals that can potentiate EGFR mitogenic effects in IBC. Herein, we assessed in ER-negative IBC cells a subset of chemicals from the EPA ToxCast set for their effect on EGFR activation and in multiple cancer phenotypic assays. We demonstrated that endocrine-disrupting chemicals such as bisphenol A (BPA) and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane can increase EGFR/ERK signaling. BPA also caused a corresponding increase in expression of SOD1 and anti-apoptotic Bcl-2, key markers of antioxidant and anti-apoptotic processes. BPA potentiated clonogenic growth and tumor spheroid formation in vitro, reflecting IBC-specific pathological characteristics. Furthermore, we identified that BPA was able to attenuate the inhibitory effect of an EGFR targeted drug in a longer-term anchorage-independent growth assay. These findings provide a potential mechanistic basis for environmental chemicals such as BPA in potentiating a hyperproliferative and death-resistant phenotype in cancer cells by activating mitogenic pathways to which the tumor cells are addicted for survival.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Carcinógenos Ambientales/toxicidad , Receptores ErbB/genética , Neoplasias Inflamatorias de la Mama/tratamiento farmacológico , Fenoles/toxicidad , Compuestos de Bencidrilo/farmacología , Carcinógenos Ambientales/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptor alfa de Estrógeno/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Femenino , Humanos , Neoplasias Inflamatorias de la Mama/genética , Neoplasias Inflamatorias de la Mama/patología , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Transducción de Señal/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos
4.
Biochem Biophys Res Commun ; 491(3): 767-772, 2017 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-28735864

RESUMEN

GLI1 is a key downstream transcription effector of the Hedgehog (Hh) signaling pathway that is involved in promoting cell growth, differentiation and tissue patterning in embryonic development. GLI1 over-activation and its nuclear localization has also been linked to the increased aggressiveness of a number of cancers. It has previously been demonstrated that DYRK1A (dual-specificity tyrosine-regulated kinase 1A) can phosphorylate GLI1 and promote GLI1 nuclear localization and its transcriptional activity. Utilizing recombinant human GLI1 and DYRK1A proteins and phospho-peptide mass spectrometry, we demonstrated that GLI1 is phosphorylated by DYRK1A at Ser408, a phospho-site that falls within the putative nuclear localization sequence (NLS) of GLI1, suggesting a possible mechanistic role in modulating its translocation. Further, we showed that the Ser408 site on GLI1 was not phosphorylated in the presence of the selective DYRK1A inhibitor harmine. The data described herein provide the first identification of a DYRK1A-mediated site of phosphorylation on GLI1 within its NLS and may serve as a valuable mechanism for further understanding Hh signaling modulation.


Asunto(s)
Señales de Localización Nuclear/química , Señales de Localización Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Proteína con Dedos de Zinc GLI1/química , Proteína con Dedos de Zinc GLI1/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Humanos , Fosforilación , Unión Proteica , Quinasas DyrK
5.
Arch Biochem Biophys ; 567: 66-74, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25529135

RESUMEN

We have generated a photoactivatable form of sonic hedgehog protein by modifying the N-terminal cysteine with the heterobifunctional photocrosslinker 4-maleimidobenzophenone (Bzm). The Bzm modification on ShhN imparted a significant increase in activity as assessed in the C3H10T1/2 functional assay with potency comparable to that of the endogenous dual-lipidated form of ShhN (ShhNp). Reversed-phase HPLC analysis indicated that the increase in activity compared to unmodified ShhN may be due in part to the hydrophobic nature of the benzophenone group. In contrast to the fully processed ShhNp, Bzm-ShhN is monomeric as assessed by analytical SEC and does not require detergent to be soluble. Further, we demonstrated that the Bzm-ShhN was able to crosslink in vitro in the presence of a known binding partner, heparin. We suggest that Bzm-ShhN can serve as a relatively facile and preferred source of ShhNp for in vitro assays and as a probe to identify novel Hh protein interactions.


Asunto(s)
Materiales Biomiméticos/química , Proteínas Hedgehog/química , Metabolismo de los Lípidos , Sondas Moleculares/química , Procesos Fotoquímicos , Animales , Benzofenonas/química , Línea Celular , Proteínas Hedgehog/metabolismo , Heparina/química , Humanos , Ratones
6.
Biochim Biophys Acta Gen Subj ; 1868(11): 130692, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39151833

RESUMEN

Sonic hedgehog (Shh) is a morphogen with important roles in embryonic development and in the development of a number of cancers. Its activity is modulated by interactions with binding partners and co-receptors including heparin and heparin sulfate proteoglycans (HSPG). To identify antagonists of Shh/heparin binding, a diverse collection of 34,560 chemicals was screened in single point 384-well format. We identified and confirmed twenty six novel small molecule antagonists with diverse structures including four scaffolds that gave rise to multiple hits. Nineteen of the confirmed hits blocked binding of the N-terminal fragment of Shh (ShhN) to heparin with IC50 values < 50 µM. In the Shh-responsive C3H10T1/2 cell model, four of the compounds demonstrated the ability to block ShhN-induced alkaline phosphatase activity. To demonstrate a direct and selective effect on ShhN ligand mediated activity, two of the compounds were able to block induction of Gli1 mRNA, a primary downstream marker for Shh signaling activity, in Shh-mediated but not Smoothened agonist (SAG)-mediated C3H10T1/2 cells. Direct binding of the two compounds to ShhN was confirmed by thermal shift assay and molecular docking simulations, with both compounds docking with the N-terminal heparin binding domain of Shh. Overall, our findings indicate that small molecule compounds that block ShhN binding to heparin and act to inhibit Shh mediated activity in vitro can be identified. We propose that the interaction between Shh and HSPGs provides a novel target for identifying small molecules that bind Shh, potentially leading to novel tool compounds to probe Shh ligand function.


Asunto(s)
Proteínas Hedgehog , Heparina , Bibliotecas de Moléculas Pequeñas , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inhibidores , Heparina/metabolismo , Heparina/química , Animales , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Ratones , Humanos , Unión Proteica , Transducción de Señal/efectos de los fármacos , Línea Celular , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/antagonistas & inhibidores
7.
MethodsX ; 8: 101383, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34430279

RESUMEN

Due to its role in brain development, the DYRK1A kinase (dual-specificity tyrosine phosphorylation-regulated kinase 1a) has been proposed as a drug target for Down syndrome, and diseases associated with neurodegeneration including Alzheimer's and Parkinson's. Other diseases in which DYRK1A is implicated include cancer and diabetes. Hence, there is need for potent and selective DYRK1A inhibitors. To screen large diversity compound libraries versus DYRK1A requires the development of a cost-effective high-throughput screen. In this study, we have taken a commercial time-resolved fluorescence energy transfer (TR-FRET)-based assay for DYRK1A and optimized for smaller volumes and homogenous format at room temperature. Tracer and enzyme concentrations were determined. DYRK1A-GST, anti-GST Ab and tracer were pre-combined and total assay volume reduced 2-fold. The assay was validated using whole plate minimum and maximum signal wells with a Z' of 0.7-0.8 determined. Overall, this method:•Results in an optimized low volume, homogenous and validated assay for DYRK1A.•Delivers a cost effective high-throughput assay format for DYRK1A inhibitor screening.

8.
Data Brief ; 37: 107189, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34141844

RESUMEN

The data presented in this article support the accompanying research article "Identification of harmine and ß-carboline analogs from a high-throughput screen of an approved drug collection; profiling as differential inhibitors of DYRK1A and monoamine oxidase A and for in vitro and in vivo anti-cancer studies" [1]. As DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1a) plays a role in the pathophysiology of a number of diseases including diabetes, cancer and neurodegeneration [2], [3], [4], the identification of DYRK1A inhibitors is of significant interest. This data article details the hits identified from a DYRK1A high-throughput screen of a small molecule compound library containing over 95% approved drugs. Twenty-two compounds were identified with >50% inhibition, including harmine and four of its analogs. Subsequent profiling of these harmine analogs using glioma cancer cell lines and high-content image analysis identified those with effects on growth and cytotoxicity.

9.
Eur J Pharm Sci ; 162: 105821, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33781856

RESUMEN

DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1a) is highly expressed in glioma, an aggressive brain tumor, and has been proposed as a therapeutic target for cancer. In the current study, we have used an optimized and validated time-resolved fluorescence energy transfer (TR-FRET)-based DYRK1A assay for high-throughput screening (HTS) in 384-well format. A small-scale screen of the FDA-approved Prestwick drug collection identified the ß-carboline, harmine, and four related analogs as DYRK1A inhibitors. Hits were confirmed by dose response and in an orthogonal DYRK1A assay. Harmine's potential therapeutic use has been hampered by its off-target activity for monoamine oxidase A (MAO-A) which impacts multiple nervous system targets. Selectivity profiling of harmine and a broader collection of analogs allowed us to map some divergent SAR (structure-activity relationships) for the DYRK1A and MAO-A activities. The panel of harmine analogs had varying activities in vitro in glioblastoma (GBM) cell lines when tested for anti-proliferative effects using a high content imaging assay. In particular, of the identified analogs, harmol was found to have the best selectivity for DYRK1A over MAO-A and, when tested in a glioma tumor xenograft model, harmol demonstrated a better therapeutic window compared to harmine.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de la Monoaminooxidasa , Neoplasias , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Carbolinas , Harmina/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa/farmacología , Quinasas DyrK
10.
Sci Rep ; 9(1): 16057, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31690747

RESUMEN

We tested whether cannabinoids (CBs) potentiate alcohol-induced birth defects in mice and zebrafish, and explored the underlying pathogenic mechanisms on Sonic Hedgehog (Shh) signaling. The CBs, Δ9-THC, cannabidiol, HU-210, and CP 55,940 caused alcohol-like effects on craniofacial and brain development, phenocopying Shh mutations. Combined exposure to even low doses of alcohol with THC, HU-210, or CP 55,940 caused a greater incidence of birth defects, particularly of the eyes, than did either treatment alone. Consistent with the hypothesis that these defects are caused by deficient Shh, we found that CBs reduced Shh signaling by inhibiting Smoothened (Smo), while Shh mRNA or a CB1 receptor antagonist attenuated CB-induced birth defects. Proximity ligation experiments identified novel CB1-Smo heteromers, suggesting allosteric CB1-Smo interactions. In addition to raising concerns about the safety of cannabinoid and alcohol exposure during early embryonic development, this study establishes a novel link between two distinct signaling pathways and has widespread implications for development, as well as diseases such as addiction and cancer.


Asunto(s)
Cannabinoides/toxicidad , Trastornos del Espectro Alcohólico Fetal/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/efectos de los fármacos , Teratogénesis/efectos de los fármacos , Animales , Etanol/efectos adversos , Etanol/farmacología , Femenino , Trastornos del Espectro Alcohólico Fetal/patología , Ratones , Receptor Smoothened/metabolismo
11.
Data Brief ; 15: 577-583, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29071296

RESUMEN

The data presented in this article support the accompanying research article "Identification of a DYRK1A-mediated phosphorylation site within the nuclear localization sequence of the hedgehog transcription factor GLI1" (Ehe et al., 2017) [1]. Although it has been demonstrated that DYRK1A (dual-specificity tyrosine-regulated kinase 1A) can phosphorylate the hedgehog pathway transcription factor GLI1 (GLIoma-associated oncogene homolog 1) and promote its nuclear localization, the DYRK1A-mediated sites of phosphorylation on GLI1 involved were not fully known. This article details the mass spectrometry methods and resulting dataset for the peptides identified from GLI1 when incubated with DYRK1A under varying conditions. The data include details of sequence coverage and all phospho-peptides identified.

12.
Oncotarget ; 8(16): 25848-25863, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28460441

RESUMEN

Inflammatory breast cancer (IBC) is one of the most lethal breast cancer variants; with existing therapy, 5-yr survival rate is only 35%. Current barriers to successful treatment of IBC include frequent infiltration and the presence of tumor cell clusters, termed tumor emboli, within the breast parenchyma and lymphatics. Prior studies have identified the role of anti-apoptotic signaling, in particular hyperactivation of NFκB and its target genes, in IBC pathobiology and therapeutic resistance. The objectives of this study were to: (1) determine if IBC tumor emboli express anti-apoptotic proteins and (2) develop a high content, multiparametric assay to assess the morphology of the IBC 3D spheroids and to optimize a high throughput format to screen for compounds that can inhibit the formation of the IBC tumor clusters/embolic structures. Immunohistochemical analysis of IBC patient tumor samples with documented tumor emboli revealed high NFκB (p65) staining along with expression of XIAP, a potent anti-apoptotic protein known to interact with NFκB signaling in enhancing survival of malignant cells. Subsequently, the high content assay developed allowed for simultaneous imaging and morphometric analysis, including count and viability of spheroids derived from SUM149, rSUM149 and SUM190 cells and its application to evaluate XIAP and NFκB inhibitory agents. We demonstrate the efficacy of the off-patent drug disulfiram when chelated with copper, which we had previously reported to inhibit NFκB signaling, was highly effective in disrupting both IBC spheroids and emboli grown in vitro. Taken together, these results identify a high-throughput approach to target tumor spheroid formation for drug discovery. Finally, disulfiram is a safe and approved drug for management of alcohol abuse, warranting its evaluation for repurposing in IBC therapy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Neoplasias Inflamatorias de la Mama/genética , Neoplasias Inflamatorias de la Mama/patología , Células Neoplásicas Circulantes/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores de Tumor , Técnicas de Cultivo de Célula , Supervivencia Celular/genética , Cobre/farmacología , Disulfiram/farmacología , Femenino , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias Inflamatorias de la Mama/metabolismo , Mitocondrias/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Esferoides Celulares , Células Tumorales Cultivadas , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
13.
Cancer Lett ; 411: 136-149, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-28965853

RESUMEN

Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.


Asunto(s)
Compuestos Heterocíclicos con 2 Anillos/farmacología , Neoplasias Inflamatorias de la Mama/tratamiento farmacológico , Piridinas/farmacología , Pirimidinas/farmacología , Tiazoles/farmacología , Proteína con Dedos de Zinc GLI1/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Inflamatorias de la Mama/metabolismo , Neoplasias Inflamatorias de la Mama/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Drug Discov Today ; Suppl: 3-12, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-23570161

RESUMEN

Phosphorylation of extracellular signal-regulated kinase (Erk) is tightly controlled by dual specificity phosphatases (DSPases), but few inhibitors of Erk dephosphorylation have been identified. Using a high-content, fluorescence-based cellular assay and the National Cancer Institute's 1990 agent Diversity Set, we identified ten compounds (0.5%) that significantly increased phospho-Erk cytonuclear differences in intact cells. Three of the ten positive compounds inhibited the mitogen-activated protein kinase phosphatase-3 (MKP-3/PYST-1) in vitro without affecting VHR or PTP1B phosphatases. The most potent inhibitor of MKP-3 had an IC50 of < 10 microM and inhibited MKP-3 in a novel, fluorescence-based multiparameter chemical complementation assay. These results suggest that the phospho-Erk nuclear accumulation assay may be a useful tool to discover DSPase inhibitors with biological activity.


Asunto(s)
Fosfatasas de Especificidad Dual/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Antineoplásicos/farmacología , Benzofuranos/farmacología , Fosfatasa 6 de Especificidad Dual/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HeLa , Humanos , Imidazoles/farmacología , Ratones , Células 3T3 NIH , Fosfatasas cdc25/antagonistas & inhibidores
15.
Chem Biol ; 10(8): 733-42, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12954332

RESUMEN

Phosphorylation of extracellular signal-regulated kinase (Erk) is tightly controlled by dual specificity phosphatases (DSPases), but few inhibitors of Erk dephosphorylation have been identified. Using a high-content, fluorescence-based cellular assay and the National Cancer Institute's 1990 agent Diversity Set, we identified ten compounds (0.5%) that significantly increased phospho-Erk cytonuclear differences in intact cells. Three of the ten positive compounds inhibited the mitogen-activated protein kinase phosphatase-3 (MKP-3/PYST-1) in vitro without affecting VHR or PTP1B phosphatases. The most potent inhibitor of MKP-3 had an IC(50) of <10 microM and inhibited MKP-3 in a novel, fluorescence-based multiparameter chemical complementation assay. These results suggest that the phospho-Erk nuclear accumulation assay may be a useful tool to discover DSPase inhibitors with biological activity.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/análisis , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Fosfatasas cdc25/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Benzofuranos/farmacología , Fosfatasa 6 de Especificidad Dual , Activación Enzimática , Técnica del Anticuerpo Fluorescente/métodos , Células HeLa , Humanos , Imidazoles/farmacología , Ratones , Células 3T3 NIH , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Especificidad por Sustrato , Fosfatasas cdc25/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA