Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Exp Dermatol ; 31(6): 943-948, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35246884

RESUMEN

An 82-year-old female patient presented with a recent onset of painful skin lesions in unilateral distribution on the abdominal area following the lines of Blaschko; the initial diagnosis of Varicella-Zoster infection was made. However, because the individual lesions appeared as hyperkeratotic papules and were unresponsive to antiviral therapy, a skin biopsy was performed, which revealed hyperkeratosis, suprabasal acantholysis and dyskeratosis with corps ronds and grains, consistent with acantholytic dyskeratotic acanthoma. Since this entity has been associated with Darier disease, whole-transcriptome sequencing by RNA-Seq was performed on RNA isolated from a lesion and from adjacent normal appearing skin, and a recently developed bioinformatics pipeline that can identify both genomic sequence variants and the presence of any of 926 viruses was applied. Two pathogenic missense mutations in the ATP2A2 gene were identified in the lesional but not in normal appearing skin, and no evidence of Varicella-Zoster infection was obtained. These findings confirm the diagnosis of segmental Darier disease due to postzygotic mutations in the ATP2A2 gene, and attest to the power of a novel single-step application of RNA-Seq in providing correct diagnosis in this rare genodermatosis.


Asunto(s)
Varicela , Enfermedad de Darier , Herpes Zóster , Anciano de 80 o más Años , Enfermedad de Darier/diagnóstico , Enfermedad de Darier/genética , Enfermedad de Darier/patología , Errores Diagnósticos , Femenino , Herpes Zóster/diagnóstico , Humanos , Mutación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Transcriptoma
2.
J Mater Chem B ; 12(15): 3774-3785, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38535706

RESUMEN

The regeneration of bone defects that exceed 2 cm is a challenge for the human body, necessitating interventional therapies. Demineralized bone matrices (DBM) derived from biological tissues have been employed for bone regeneration and possess notable osteoinductive and osteoconductive characteristics. Nevertheless, their efficiency in regenerating critically sized injuries is limited, and therefore additional signaling cues are required. Thanks to the piezoelectric properties of the bone, external physical stimulation is shown to accelerate tissue healing. We have implanted human DBM in critically sized cranial bone defects in rat animal models and exposed them to an external magnetic field (1 T) to enhance endogenous bone formation. Our in vitro experiments showed the superior cytocompatibility of DBM compared to cell culture plates. Furthermore, alkaline phosphatase activity after 14 days and Alizarin red staining at 28 days demonstrated differentiation of rat bone marrow mesenchymal stem cells into bone lineage on DBM. Computer tomography images together with histological analyses showed that implanting DBM in the injured rats significantly enhanced bone regeneration. Notably, combining DBM transplantation with a 2 h daily exposure to a 1 T magnetic field for 2 weeks (day 7 to 21 post-surgery) significantly improved bone regeneration compared to DBM transplantation alone. This research indicates that utilizing external magnetic stimulation significantly enhances the potential of bone allografts to regenerate critically sized bone defects.


Asunto(s)
Matriz Ósea , Huesos , Ratas , Humanos , Animales , Regeneración Ósea , Osteogénesis , Modelos Animales
3.
JCI Insight ; 7(8)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35316210

RESUMEN

Severe viral infections of the skin can occur in patients with inborn errors of immunity (IEI). We report an all-in-one whole-transcriptome sequencing-based method by RNA-Seq on a single skin biopsy for concomitantly identifying the cutaneous virome and the underlying IEI. Skin biopsies were obtained from healthy and lesional skin from patients with cutaneous infections suspected to be of viral origin. RNA-Seq was utilized as the first-tier strategy for unbiased human genome-wide rare variant detection. Reads unaligned to the human genome were utilized for the exploration of 926 viruses in a viral genome catalog. In 9 families studied, the patients carried pathogenic variants in 6 human IEI genes, including IL2RG, WAS, CIB1, STK4, GATA2, and DOCK8. Gene expression profiling also confirmed pathogenicity of the human variants and permitted genome-wide homozygosity mapping, which assisted in identification of candidate genes in consanguineous families. This automated, online, all-in-one computational pipeline, called VirPy, enables simultaneous detection of the viral triggers and the human genetic variants underlying skin lesions in patients with suspected IEI and viral dermatosis.


Asunto(s)
Enfermedades de la Piel , Transcriptoma , Consanguinidad , Homocigoto , Humanos , Enfermedades de la Piel/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA