Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 626(7997): 194-206, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096902

RESUMEN

The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.


Asunto(s)
Endonucleasas , Elementos de Nucleótido Esparcido Largo , ADN Polimerasa Dirigida por ARN , Transcripción Reversa , Humanos , Microscopía por Crioelectrón , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , ARN/genética , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Cristalografía por Rayos X , ADN/biosíntesis , ADN/genética , Inmunidad Innata , Interferones/biosíntesis
2.
J Biol Chem ; 300(8): 107514, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945449

RESUMEN

The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.


Asunto(s)
Antivirales , ARN Polimerasa Dependiente del ARN , Humanos , Antivirales/farmacología , Antivirales/química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/química , Virus ARN/efectos de los fármacos , Virus ARN/enzimología , Metapneumovirus/efectos de los fármacos , Nucleótidos/química , Nucleótidos/farmacología , Nucleótidos/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(27): e2200260119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35771941

RESUMEN

Human endogenous retroviruses (HERVs) comprise nearly 8% of the human genome and are derived from ancient integrations of retroviruses into the germline. The biology of HERVs is poorly defined, but there is accumulating evidence supporting pathological roles in diverse diseases, such as cancer, autoimmune, and neurodegenerative diseases. Functional proteins are produced by HERV-encoded genes, including reverse transcriptases (RTs), which could be a contributor to the pathology attributed to aberrant HERV-K expression. To facilitate the discovery and development of HERV-K RT potent and selective inhibitors, we expressed active HERV-K RT and determined the crystal structure of a ternary complex of this enzyme with a double-stranded DNA substrate. We demonstrate a range of RT inhibition with antiretroviral nucleotide analogs, while classic nonnucleoside analogs do not inhibit HERV-K RT. Detailed comparisons of HERV-K RT with other known RTs demonstrate similarities to diverse RT families and a striking similarity to the HIV-1 RT asymmetric heterodimer. Our analysis further reveals opportunities for selective HERV-K RT inhibition.


Asunto(s)
Antirretrovirales , Descubrimiento de Drogas , Retrovirus Endógenos , ADN Polimerasa Dirigida por ARN , Inhibidores de la Transcriptasa Inversa , Antirretrovirales/química , Antirretrovirales/farmacología , Retrovirus Endógenos/enzimología , Retrovirus Endógenos/genética , Genes Virales , Transcriptasa Inversa del VIH/química , Humanos , Multimerización de Proteína , ADN Polimerasa Dirigida por ARN/química , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología
4.
J Biol Chem ; 298(2): 101529, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34953856

RESUMEN

Remdesivir (RDV) is a direct-acting antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2. RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, for example, severe acute respiratory syndrome coronavirus and hepatitis C virus, and nonsegmented negative-sense RNA viruses, for example, Nipah virus, whereas segmented negative-sense RNA viruses such as influenza virus or Crimean-Congo hemorrhagic fever virus are not sensitive to the drug. The reasons for this apparent efficacy pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. We found a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Inhibition in primer extension reactions was heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP was seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of the inhibitor and residues of the structurally conserved RNA-dependent RNA polymerase motif F. We conclude that future efforts in the development of nucleotide analogs with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Modelos Moleculares , Virus ARN/enzimología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/química , Alanina/farmacología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/enzimología , Virus ARN de Sentido Negativo/efectos de los fármacos , Virus ARN de Sentido Negativo/enzimología , Virus Nipah/efectos de los fármacos , Virus Nipah/enzimología , Virus ARN Monocatenarios Positivos/efectos de los fármacos , Virus ARN Monocatenarios Positivos/enzimología , Virus ARN/efectos de los fármacos , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Replicación Viral/efectos de los fármacos
5.
Proc Natl Acad Sci U S A ; 117(43): 26946-26954, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33028676

RESUMEN

Remdesivir is a broad-spectrum antiviral nucleotide prodrug that has been clinically evaluated in Ebola virus patients and recently received emergency use authorization (EUA) for treatment of COVID-19. With approvals from the Federal Select Agent Program and the Centers for Disease Control and Prevention's Institutional Biosecurity Board, we characterized the resistance profile of remdesivir by serially passaging Ebola virus under remdesivir selection; we generated lineages with low-level reduced susceptibility to remdesivir after 35 passages. We found that a single amino acid substitution, F548S, in the Ebola virus polymerase conferred low-level reduced susceptibility to remdesivir. The F548 residue is highly conserved in filoviruses but should be subject to specific surveillance among novel filoviruses, in newly emerging variants in ongoing outbreaks, and also in Ebola virus patients undergoing remdesivir therapy. Homology modeling suggests that the Ebola virus polymerase F548 residue lies in the F-motif of the polymerase active site, a region that was previously identified as susceptible to resistance mutations in coronaviruses. Our data suggest that molecular surveillance of this region of the polymerase in remdesivir-treated COVID-19 patients is also warranted.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Betacoronavirus/enzimología , Ebolavirus/enzimología , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Adenosina Monofosfato/farmacología , Alanina/farmacología , Betacoronavirus/química , Línea Celular , Tolerancia a Medicamentos/genética , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Humanos , Modelos Moleculares , Mutación , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos
6.
J Biol Chem ; 296: 100486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33647314

RESUMEN

Baloxavir marboxil (BXM) is an FDA-approved antiviral prodrug for the treatment of influenza A and B infection and postexposure prophylaxis. The active form, baloxavir acid (BXA), targets the cap-snatching endonuclease (PA) of the influenza virus polymerase complex. The nuclease activity delivers the primer for transcription, and previous reports have shown that BXA blocks the nuclease activity with high potency. However, biochemical studies on the mechanism of action are lacking. Structural data have shown that BXA chelates the two divalent metal ions at the active site, like inhibitors of the human immunodeficiency virus type 1 (HIV-1) integrase or ribonuclease (RNase) H. Here we studied the mechanisms underlying the high potency of BXA and how the I38T mutation confers resistance to the drug. Enzyme kinetics with the recombinant heterotrimeric enzyme (FluB-ht) revealed characteristics of a tight binding inhibitor. The apparent inhibitor constant (Kiapp) is 12 nM, while the I38T mutation increased Kiapp by ∼18-fold. Order-of-addition experiments show that a preformed complex of FluB-ht, Mg2+ ions and BXA is required to observe inhibition, which is consistent with active site binding. Conversely, a preformed complex of FluB-ht and RNA substrate prevents BXA from accessing the active site. Unlike integrase inhibitors that interact with the DNA substrate, BXA behaves like RNase H inhibitors that compete with the nucleic acid at the active site. The collective data support the conclusion that BXA is a tight binding inhibitor and the I38T mutation diminishes these properties.


Asunto(s)
Dibenzotiepinas/farmacología , Endonucleasas/antagonistas & inhibidores , Virus de la Influenza B/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Morfolinas/farmacología , Piridonas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Triazinas/farmacología , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Dominio Catalítico , Endonucleasas/metabolismo , Humanos , Virus de la Influenza B/enzimología , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
7.
J Biol Chem ; 297(1): 100770, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33989635

RESUMEN

The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue ß-D-N4-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5'-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Citidina/análogos & derivados , Hidroxilaminas/farmacología , ARN Viral/genética , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Citidina/farmacología , Humanos , Mutagénesis , Mutación Puntual/efectos de los fármacos , SARS-CoV-2/metabolismo
8.
Chemistry ; 28(10): e202104484, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-34990513

RESUMEN

Structure elucidation and total synthesis of five unprecedented terpenoid-alkaloids, the sandacrabins, are reported, alongside with the first description of their producing organism Sandaracinus defensii MSr10575, which expands the Sandaracineae family by only its second member. The genome sequence of S. defensii as presented in this study was utilized to identify enzymes responsible for sandacrabin formation, whereby dimethylbenzimidazol, deriving from cobalamin biosynthesis, was identified as key intermediate. Biological activity profiling revealed that all sandacrabins except congener A exhibit potent antiviral activity against the human pathogenic coronavirus HCoV229E in the three digit nanomolar range. Investigation of the underlying mode of action discloses that the sandacrabins inhibit the SARS-CoV-2 RNA-dependent RNA polymerase complex, highlighting them as structurally distinct non-nucleoside RNA synthesis inhibitors. The observed segregation between cell toxicity at higher concentrations and viral inhibition opens the possibility for their medicinal chemistry optimization towards selective inhibitors.


Asunto(s)
Antivirales , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Myxococcales/química , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Antivirales/farmacología
9.
Molecules ; 27(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35807457

RESUMEN

The urgent response to the COVID-19 pandemic required accelerated evaluation of many approved drugs as potential antiviral agents against the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using cell-based, biochemical, and modeling approaches, we studied the approved HIV-1 nucleoside/tide reverse transcriptase inhibitors (NRTIs) tenofovir (TFV) and emtricitabine (FTC), as well as prodrugs tenofovir alafenamide (TAF) and tenofovir disoproxilfumarate (TDF) for their antiviral effect against SARS-CoV-2. A comprehensive set of in vitro data indicates that TFV, TAF, TDF, and FTC are inactive against SARS-CoV-2. None of the NRTIs showed antiviral activity in SARS-CoV-2 infected A549-hACE2 cells or in primary normal human lung bronchial epithelial (NHBE) cells at concentrations up to 50 µM TAF, TDF, FTC, or 500 µM TFV. These results are corroborated by the low incorporation efficiency of respective NTP analogs by the SARS-CoV-2 RNA-dependent-RNA polymerase (RdRp), and lack of the RdRp inhibition. Structural modeling further demonstrated poor fitting of these NRTI active metabolites at the SARS-CoV-2 RdRp active site. Our data indicate that the HIV-1 NRTIs are unlikely direct-antivirals against SARS-CoV-2, and clinicians and researchers should exercise caution when exploring ideas of using these and other NRTIs to treat or prevent COVID-19.


Asunto(s)
Fármacos Anti-VIH , Tratamiento Farmacológico de COVID-19 , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Emtricitabina/farmacología , Emtricitabina/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Humanos , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Nucleótidos/farmacología , Pandemias , ARN Viral , ARN Polimerasa Dependiente del ARN , SARS-CoV-2 , Tenofovir/farmacología , Tenofovir/uso terapéutico
10.
J Biol Chem ; 295(15): 4773-4779, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094225

RESUMEN

Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome-coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome-CoV and Middle East respiratory syndrome (MERS-CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS-CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS-CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3'-5' exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/química , Alanina/farmacología , Animales , Antivirales/química , Coronavirus/enzimología , Ebolavirus/enzimología , Expresión Génica , Inhibidores de la Síntesis del Ácido Nucleico/química , ARN , ARN Polimerasa Dependiente del ARN/genética , Células Sf9 , Proteínas no Estructurales Virales/genética
11.
J Biol Chem ; 295(20): 6785-6797, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32284326

RESUMEN

Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Betacoronavirus/enzimología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , Betacoronavirus/fisiología , Modelos Moleculares , SARS-CoV-2 , Células Sf9 , Spodoptera
12.
J Biol Chem ; 295(47): 16156-16165, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32967965

RESUMEN

Remdesivir (RDV) is a direct-acting antiviral agent that is used to treat patients with severe coronavirus disease 2019 (COVID-19). RDV targets the viral RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have previously shown that incorporation of the active triphosphate form of RDV (RDV-TP) at position i causes delayed chain termination at position i + 3. Here we demonstrate that the S861G mutation in RdRp eliminates chain termination, which confirms the existence of a steric clash between Ser-861 and the incorporated RDV-TP. With WT RdRp, increasing concentrations of NTP pools cause a gradual decrease in termination and the resulting read-through increases full-length product formation. Hence, RDV residues could be embedded in copies of the first RNA strand that is later used as a template. We show that the efficiency of incorporation of the complementary UTP opposite template RDV is compromised, providing a second opportunity to inhibit replication. A structural model suggests that RDV, when serving as the template for the incoming UTP, is not properly positioned because of a significant clash with Ala-558. The adjacent Val-557 is in direct contact with the template base, and the V557L mutation is implicated in low-level resistance to RDV. We further show that the V557L mutation in RdRp lowers the nucleotide concentration required to bypass this template-dependent inhibition. The collective data provide strong evidence to show that template-dependent inhibition of SARS-CoV-2 RdRp by RDV is biologically relevant.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Terminación de la Transcripción Genética/efectos de los fármacos , Adenosina Monofosfato/farmacología , Alanina/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Modelos Químicos , Mutación , Nucleótidos/metabolismo , SARS-CoV-2/genética , Moldes Genéticos , Replicación Viral/efectos de los fármacos
14.
Biochemistry ; 55(9): 1362-71, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26878277

RESUMEN

Thiol dioxygenases catalyze the synthesis of sulfinic acids in a range of organisms from bacteria to mammals. A thiol dioxygenase from the bacterium Pseudomonas aeruginosa oxidizes both 3-mercaptopropionic acid and cysteine, with a ∼70 fold preference for 3-mercaptopropionic acid over all pHs. This substrate reactivity is widened compared to other thiol dioxygenases and was exploited in this investigation of the residues important for activity. A simple model incorporating two protonation events was used to fit profiles of the Michaelis-Menten parameters determined at different pH values for both substrates. The pKs determined using plots of k(cat)/Km differ at low pH, but not in a way easily attributable to protonation of the substrate alone and share a common value at higher pH. Plots of k(cat) versus pH are also quite different at low pH showing the monoprotonated ES complexes with 3-mercaptopropionic acid and cysteine have different pKs. At higher pH, k(cat) decreases sigmoidally with a similar pK regardless of substrate. Loss of reactivity at high pH is attributed to deprotonation of tyrosine 159 and its influence on dioxygen binding. A mechanism is proposed by which deprotonation of tyrosine 159 both blocks oxygen binding and concomitantly promotes cystine formation. Finally, the role of tyrosine 159 was further probed by production of a G95C variant that is able to form a cysteine-tyrosine crosslink homologous to that found in mammalian cysteine dioxygenases. Activity of this variant is severely impaired. Crystallography shows that when un-crosslinked, the cysteine thiol excludes tyrosine 159 from its native position, while kinetic analysis shows that the thioether bond impairs reactivity of the crosslinked form.


Asunto(s)
Ácido 3-Mercaptopropiónico/química , Proteínas Bacterianas/química , Dioxigenasas/química , Pseudomonas aeruginosa/enzimología , Ácido 3-Mercaptopropiónico/aislamiento & purificación , Proteínas Bacterianas/aislamiento & purificación , Cristalografía por Rayos X , Dioxigenasas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Estructura Secundaria de Proteína , Especificidad por Sustrato/fisiología
15.
J Biol Chem ; 290(40): 24424-37, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26272617

RESUMEN

Thiol dioxygenation is the initial oxidation step that commits a thiol to important catabolic or biosynthetic pathways. The reaction is catalyzed by a family of specific non-heme mononuclear iron proteins each of which is reported to react efficiently with only one substrate. This family of enzymes includes cysteine dioxygenase, cysteamine dioxygenase, mercaptosuccinate dioxygenase, and 3-mercaptopropionate dioxygenase. Using sequence alignment to infer cysteine dioxygenase activity, a cysteine dioxygenase homologue from Pseudomonas aeruginosa (p3MDO) has been identified. Mass spectrometry of P. aeruginosa under standard growth conditions showed that p3MDO is expressed in low levels, suggesting that this metabolic pathway is available to the organism. Purified recombinant p3MDO is able to oxidize both cysteine and 3-mercaptopropionic acid in vitro, with a marked preference for 3-mercaptopropionic acid. We therefore describe this enzyme as a 3-mercaptopropionate dioxygenase. Mössbauer spectroscopy suggests that substrate binding to the ferrous iron is through the thiol but indicates that each substrate could adopt different coordination geometries. Crystallographic comparison with mammalian cysteine dioxygenase shows that the overall active site geometry is conserved but suggests that the different substrate specificity can be related to replacement of an arginine by a glutamine in the active site.


Asunto(s)
Ácido 3-Mercaptopropiónico/química , Proteínas Bacterianas/química , Cisteína-Dioxigenasa/química , Pseudomonas aeruginosa/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/química , Hierro/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Oxígeno/química , Consumo de Oxígeno , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Espectrofotometría , Especificidad por Sustrato , Compuestos de Sulfhidrilo
16.
J Biol Chem ; 290(3): 1474-84, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25355312

RESUMEN

The pyrophosphate mimic and broad spectrum antiviral phosphonoformic acid (PFA, foscarnet) was shown to freeze the pre-translocational state of the reverse transcriptase (RT) complex of the human immunodeficiency virus type 1 (HIV-1). However, PFA lacks a specificity domain, which is seen as a major reason for toxic side effects associated with the clinical use of this drug. Here, we studied the mechanism of inhibition of HIV-1 RT by the 4-chlorophenylhydrazone of mesoxalic acid (CPHM) and demonstrate that this compound also blocks RT translocation. Hot spots for inhibition with PFA or CPHM occur at template positions with a bias toward pre-translocation. Mutations at active site residue Asp-185 compromise binding of both compounds. Moreover, divalent metal ions are required for the formation of ternary complexes with either of the two compounds. However, CPHM contains both an anchor domain that likely interacts with the catalytic metal ions and a specificity domain. Thus, although the inhibitor binding sites may partly overlap, they are not identical. The K65R mutation in HIV-1 RT, which reduces affinity to PFA, increases affinity to CPHM. Details with respect to the binding sites of the two inhibitors are provided on the basis of mutagenesis studies, structure-activity relationship analyses with newly designed CPHM derivatives, and in silico docking experiments. Together, these findings validate the pre-translocated complex of HIV-1 RT as a specific target for the development of novel classes of RT inhibitors.


Asunto(s)
Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/enzimología , Hidrazonas/química , Malonatos/química , Inhibidores de la Transcriptasa Inversa/química , Antirretrovirales/química , Catálisis , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Iones , Metales/química , Modelos Moleculares , Mutagénesis , Mutación , Unión Proteica , Multimerización de Proteína , Ribonucleasa H/química , Relación Estructura-Actividad
17.
J Biol Inorg Chem ; 21(4): 501-10, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27193596

RESUMEN

Cysteine dioxygenase is a non-heme mononuclear iron enzyme with unique structural features, namely an intramolecular thioether cross-link between cysteine 93 and tyrosine 157, and a disulfide bond between substrate L-cysteine and cysteine 164 in the entrance channel to the active site. We investigated how these posttranslational modifications affect catalysis through a kinetic, crystallographic and computational study. The enzyme kinetics of a C164S variant are identical to WT, indicating that disulfide formation at C164 does not significantly impair access to the active site at physiological pH. However, at high pH, the cysteine-tyrosine cross-link formation is enhanced in C164S. This supports the view that disulfide formation at position 164 can limit access to the active site. The C164S variant yielded crystal structures of unusual clarity in both resting state and with cysteine bound. Both show that the iron in the cysteine-bound complex is a mixture of penta- and hexa-coordinate with a water molecule taking up the final site (60 % occupancy), which is where dioxygen is believed to coordinate during turnover. The serine also displays stronger hydrogen bond interactions to a water bound to the amine of the substrate cysteine. However, the interactions between cysteine and iron appear unchanged. DFT calculations support this and show that WT and C164S have similar binding energies for the water molecule in the final site. This variant therefore provides evidence that WT also exists in an equilibrium between penta- and hexa-coordinate forms and the presence of the sixth ligand does not strongly affect dioxygen binding.


Asunto(s)
Cisteína-Dioxigenasa/química , Cisteína/química , Animales , Dominio Catalítico , Cisteína/metabolismo , Cisteína-Dioxigenasa/aislamiento & purificación , Cisteína-Dioxigenasa/metabolismo , Modelos Moleculares , Teoría Cuántica , Ratas , Programas Informáticos
18.
Biochemistry ; 53(50): 7961-8, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25390690

RESUMEN

Cysteine dioxygenase (CDO) is a non-heme monoiron enzyme with an unusual posttranslational modification in the proximity of the ferrous iron active site. This modification, a cysteine to tyrosine thioether bond, cross-links two ß-strands of the ß-barrel. We have investigated its role in catalysis through a combined crystallographic and kinetic approach. The C93G variant lacks the cross-link and shows little change in structure from that of the wild type, suggesting that the cross-link does not stabilize an otherwise unfavorable conformation. A pH-dependent kinetic study shows that both cross-linked and un-cross-linked CDO are active but the optimal pH decreases with the presence of the cross-link. This result reflects the effect of the thioether bond on the pKa of Y157 and this residue's role in catalysis. At higher pH values, kcat is also higher for the cross-linked form, extending the pH range of activity. We therefore propose that the cross-link also increases activity by controlling deleterious interactions involving the thiol/ate of C93.


Asunto(s)
Cisteína-Dioxigenasa/química , Cisteína/química , Tirosina/química , Sustitución de Aminoácidos , Animales , Catálisis , Cristalografía por Rayos X , Cisteína/genética , Cisteína-Dioxigenasa/genética , Concentración de Iones de Hidrógeno , Mutación Missense , Estructura Secundaria de Proteína , Ratas , Tirosina/genética
19.
Proc Natl Acad Sci U S A ; 108(51): 20509-13, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22135458

RESUMEN

The development of resistance to direct-acting antivirals (DAAs) targeting the hepatitis C virus (HCV) can compromise therapy. However, mechanisms that determine prevalence and frequency of resistance-conferring mutations remain elusive. Here, we studied the fidelity of the HCV RNA-dependent RNA polymerase NS5B in an attempt to link the efficiency of mismatch formation with genotypic changes observed in vivo. Enzyme kinetic measurements revealed unexpectedly high error rates (approximately 10(-3) per site) for G:U/U:G mismatches. The strong preference for G:U/U:G mismatches over all other mistakes correlates with a mutational bias in favor of transitions over transversions. Deep sequencing of HCV RNA samples isolated from 20 treatment-naïve patients revealed an approximately 75-fold difference in frequencies of the two classes of mutations. A stochastic model based on these results suggests that the bias toward transitions can also affect the selection of resistance-conferring mutations. Collectively, the data provide strong evidence to suggest that the nature of the nucleotide change can contribute to the genetic barrier in the development of resistance to DAAs.


Asunto(s)
Análisis Mutacional de ADN , Farmacorresistencia Viral , Hepacivirus/genética , Antivirales/farmacología , Secuencia de Bases , Variación Genética , Genotipo , Cinética , Modelos Genéticos , Modelos Teóricos , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia de ADN , Procesos Estocásticos , Proteínas no Estructurales Virales/genética
20.
Biochemistry ; 52(43): 7606-17, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24084026

RESUMEN

Describing the organization of substrates and substrate analogues in the active site of cysteine dioxygenase identifies potential intermediates in this critical yet poorly understood reaction, the oxidation of cysteine to cysteine sulfinic acid. The fortuitous formation of persulfides under crystallization conditions has allowed their binding in the active site of cysteine dioxygenase to be studied. The crystal structures of cysteine persulfide and 3-mercaptopropionic acid persulfide bound to iron(II) in the active site show that binding of the persulfide occurs via the distal sulfide and, in the case of the cysteine persulfide, the amine also binds. Persulfide was detected by mass spectrometry in both the crystal and the drop, suggesting its origin is chemical rather than enzymatic. A mechanism involving the formation of the relevant disulfide from sulfide produced by hydrolysis of dithionite is proposed. In comparison, persulfenate {observed bound to cysteine dioxygenase [Simmons, C. R., et al. (2008) Biochemistry 47, 11390]} is shown through mass spectrometry to occur only in the crystal and not in the surrounding drop, suggesting that in the crystalline state the persulfenate does not lie on the reaction pathway. Stabilization of both the persulfenate and the persulfides does, however, suggest the position in which dioxygen binds during catalysis.


Asunto(s)
Cisteína-Dioxigenasa/metabolismo , Modelos Moleculares , Sulfuros/metabolismo , Ácido 3-Mercaptopropiónico/química , Ácido 3-Mercaptopropiónico/metabolismo , Animales , Biocatálisis , Dominio Catalítico , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Cisteína-Dioxigenasa/química , Cisteína-Dioxigenasa/genética , Disulfuros/química , Disulfuros/metabolismo , Ligandos , Conformación Molecular , Oxidación-Reducción , Unión Proteica , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidad , Espectrometría de Masa por Ionización de Electrospray , Sulfuros/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA