RESUMEN
BACKGROUND: Vector control using insecticides is a key prevention strategy against malaria. Unfortunately, insecticide resistance in mosquitoes threatens all progress in malaria control. In the perspective of managing this resistance, new insecticide formulations are being tested to improve the effectiveness of vector control tools. METHODS: The efficacy and residual activity of Pirikool® 300 CS was evaluated in comparison with Actellic® 300 CS in experimental huts at the Tiassalé experimental station on three substrates including cement, wood and mud. The mortality, blood-feeding inhibition, exiting behaviour and deterrency of free-flying wild mosquitoes was evaluated. Cone bioassay tests with susceptible and resistant mosquito strains were conducted in the huts to determine residual efficacy. RESULTS: A total of 20,505 mosquitoes of which 10,979 (53%) wild female Anopheles gambiae were collected for 112 nights. Residual efficacy obtained from monthly cone bioassay was higher than 80% with the susceptible, laboratory-maintained An. gambiae Kisumu strain, from the first to the tenth study period on all three types of treated substrate for both Actellic® 300CS and Pirikool® 300CS. This residual efficacy on the wild Tiassalé strain was over 80% until the 4th month of study on Pirikool® 300CS S treated substrates. Overall 24-h mortalities of wild free-flying An. gambiae sensu lato which entered in the experimental huts over the 8-months trial on Pirikool® 300CS treatment was 50.5%, 75.9% and 52.7%, respectively, on cement wall, wood wall and mud wall. The positive reference product Actellic® 300CS treatment induced mortalities of 42.0%, 51.8% and 41.8% on cement wall, wood wall and mud wall. CONCLUSION: Pirikool® 300CS has performed really well against resistant strains of An. gambiae using indoor residual spraying method in experimental huts. It could be an alternative product for indoor residual spraying in response to the vectors' resistance to insecticides.
Asunto(s)
Anopheles , Insecticidas , Control de Mosquitos , Anopheles/efectos de los fármacos , Animales , Control de Mosquitos/métodos , Insecticidas/farmacología , Femenino , Mosquitos Vectores/efectos de los fármacos , Vivienda , Resistencia a los Insecticidas , Malaria/prevención & controlRESUMEN
BACKGROUND: The recent reduction in malaria burden in Côte d'Ivoire is largely attributable to the use of long-lasting insecticidal nets (LLINs). However, this progress is threatened by insecticide resistance and behavioral changes in Anopheles gambiae sensu lato (s.l.) populations and residual malaria transmission, and complementary tools are required. Thus, this study aimed to assess the efficacy of the combined use of LLINs and Bacillus thuringiensis israelensis (Bti), in comparison with LLINs. METHODS: This study was conducted in the health district of Korhogo, northern Côte d'Ivoire, within two study arms (LLIN + Bti arm and LLIN-only arm) from March 2019 to February 2020. In the LLIN + Bti arm, Anopheles larval habitats were treated every fortnight with Bti in addition to the use of LLINs. Mosquito larvae and adults were sampled and identified morphologically to genus and species using standard methods. The members of the An. gambiae complex were determined using a polymerase chain reaction technique. Plasmodium infection in An. gambiae s.l. and malaria incidence in local people was also assessed. RESULTS: Overall, Anopheles spp. larval density was lower in the LLIN + Bti arm 0.61 [95% CI 0.41-0.81] larva/dip (l/dip) compared with the LLIN-only arm 3.97 [95% CI 3.56-4.38] l/dip (RR = 6.50; 95% CI 5.81-7.29; P < 0.001). The overall biting rate of An. gambiae s.l. was 0.59 [95% CI 0.43-0.75] biting/person/night in the LLIN + Bti arm against 2.97 [95% CI 2.02-3.93] biting/person/night in LLIN-only arm (P < 0.001). Anopheles gambiae s.l. was predominantly identified as An. gambiae sensu stricto (s.s.) (95.1%, n = 293), followed by Anopheles coluzzii (4.9%; n = 15). The human-blood index was 80.5% (n = 389) in study area. EIR was 1.36 infected bites/person/year (ib/p/y) in the LLIN + Bti arm against 47.71 ib/p/y in the LLIN-only arm. Malaria incidence dramatically declined from 291.8 (n = 765) to 111.4 (n = 292) in LLIN + Bti arm (P < 0.001). CONCLUSIONS: The combined use of LLINs with Bti significantly reduced the incidence of malaria. The LLINs and Bti duo could be a promising integrated approach for effective vector control of An. gambiae for elimination of malaria.
Asunto(s)
Anopheles , Bacillus thuringiensis , Mosquiteros Tratados con Insecticida , Larva , Malaria , Control de Mosquitos , Côte d'Ivoire/epidemiología , Animales , Anopheles/efectos de los fármacos , Anopheles/fisiología , Larva/efectos de los fármacos , Malaria/prevención & control , Malaria/transmisión , Control de Mosquitos/métodos , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Femenino , Mosquitos Vectores/efectos de los fármacos , Humanos , Masculino , Adolescente , Preescolar , Adulto Joven , Niño , AdultoRESUMEN
BACKGROUND: Mass distributions of long-lasting insecticidal nets (LLINs) have contributed to large reductions in the malaria burden. However, this success is in jeopardy due in part to the increasing pyrethroid-resistant mosquito population as well as low LLINs coverage in various areas because the lifespan of LLINs is often shorter than the interval between replenishment campaigns. New insecticide-treated nets (ITNs) containing pyrethroid and piperonyl-butoxide (PBO) have shown a greater reduction in the incidence of malaria than pyrethroid LLINs in areas with pyrethroid-resistant mosquitoes. However, the durability (attrition, bio-efficacy, physical integrity and chemical retainment) of pyrethroid-PBO ITNs under operational settings has not been fully characterized. This study will measure the durability of pyrethroid-PBO ITNs to assess whether they meet the World Health Organization (WHO) three years of operational performance criteria required to be categorized as "long-lasting". METHODS: A prospective household randomized controlled trial will be conducted simultaneously in Tanzania, India and Côte d'Ivoire to estimate the field durability of three pyrethroid-PBO ITNs (Veeralin®, Tsara® Boost, and Olyset® Plus) compared to a pyrethroid LLIN: MAGNet®. Durability monitoring will be conducted up to 36 months post-distribution and median survival in months will be calculated. The proportion of ITNs: (1) lost (attrition), (2) physical integrity, (3) resistance to damage score, (4) meeting WHO bio-efficacy (≥ 95% knockdown after 1 h or ≥ 80% mortality after 24 h for WHO cone bioassay, or ≥ 90% blood-feeding inhibition or ≥ 80% mortality after 24 h for WHO Tunnel tests) criteria against laboratory-reared resistant and susceptible mosquitoes, and insecticidal persistence over time will be estimated. The non-inferiority of Veeralin® and Tsara® Boost to the first-in-class, Olyset® Plus will additionally be assessed for mortality, and the equivalence of 20 times washed ITNs compared to field aged ITNs will be assessed for mortality and blood-feeding inhibition endpoints in the Ifakara Ambient Chamber Test, Tanzania. CONCLUSION: This will be the first large-scale prospective household randomized controlled trial of pyrethroid-PBO ITNs in three different countries in East Africa, West Africa and South Asia, simultaneously. The study will generate information on the replenishment intervals for PBO nets.
Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria , Butóxido de Piperonilo , Piretrinas , Animales , Humanos , Côte d'Ivoire , Resistencia a los Insecticidas , Malaria/prevención & control , Control de Mosquitos/métodos , Butóxido de Piperonilo/farmacología , Estudios Prospectivos , Piretrinas/farmacología , Ensayos Clínicos Controlados Aleatorios como Asunto , TanzaníaRESUMEN
An amendment to this paper has been published and can be accessed via the original article.
RESUMEN
BACKGROUND: Long-lasting insecticidal nets (LLINs) treated with pyrethroids are the foundation of malaria control in sub-Saharan Africa. Rising pyrethroid resistance in vectors, however, has driven the development of alternative net formulations. Here the durability of polyethylene nets with a novel combination of a pyrethroid, permethrin, and the insect juvenile hormone mimic, pyriproxyfen (PPF), compared to a standard permethrin LLIN, was assessed in rural Burkina Faso. METHODS: A compound-randomized controlled trial was completed in two villages. In one village 326 of the PPF-permethrin nets (Olyset Duo) and 327 standard LLINs (Olyset) were distributed to assess bioefficacy. In a second village, 170 PPF-permethrin nets and 376 LLINs were distributed to assess survivorship. Nets were followed at 6-monthly intervals for 3 years. Bioefficacy was assessed by exposing permethrin-susceptible and resistant Anopheles gambiae sensu lato mosquito strains to standard World Health Organization (WHO) cone and tunnel tests with impacts on fertility measured in the resistant strain. Insecticide content was measured using high-performance liquid chromatography. LLIN survivorship was recorded with a questionnaire and assessed by comparing the physical integrity using the proportionate hole index (pHI). RESULTS: The PPF-permethrin net met WHO bioefficacy criteria (≥ 80% mortality or ≥ 95% knockdown) for the first 18 months, compared to 6 months for the standard LLIN. Mean mosquito mortality for PPF-permethrin nets, across all time points, was 8.6% (CI 2.6-14.6%) higher than the standard LLIN. Fertility rates were reduced after PPF-permethrin net exposure at 1-month post distribution, but not later. Permethrin content of both types of nets remained within the target range of 20 g/kg ± 25% for 242/248 nets tested. The pyriproxyfen content of PPF-permethrin nets declined by 54%, from 10.4 g/kg (CI 10.2-10.6) to 4.7 g/kg (CI 3.5-6.0, p < 0.001) over 36 months. Net survivorship was poor, with only 13% of PPF-permethrin nets and 12% of LLINs still present in the original household after 36 months. There was no difference in the fabric integrity or survivorship between the two net types. CONCLUSION: The PPF-permethrin net, Olyset Duo, met or exceeded the performance of the WHO-recommended standard LLIN (Olyset) in the current study but both net types failed the 3-year WHO bioefficacy criteria.
Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Insecticidas , Control de Mosquitos , Mosquitos Vectores , Permetrina , Piridinas , Animales , Burkina Faso , Malaria/prevención & controlRESUMEN
BACKGROUND: Insecticide-treated wall lining (ITWL) is a new concept in malaria vector control. Some Anopheles gambiae populations in West Africa have developed resistance to all the main classes of insecticides. It needs to be demonstrated whether vector control can be improved or resistance managed when non-pyrethroid ITWL is used alone or together with long-lasting insecticidal nets (LLINs) against multiple insecticide-resistant vector populations. METHODS: Two experimental hut trials were carried out as proofs of concept to evaluate pirimiphos methyl (p-methyl)-treated plastic wall lining (WL) and net wall hangings (NWH) used alone and in combination with LLINs against multiple insecticide-resistant An. gambiae in Tiassalé, Côte d'Ivoire. Comparison was made to commercial deltamethrin WL and genotypes for kdr and ace-1R resistance were monitored. RESULTS: The kdr and ace-1R allele frequencies were 0.83 and 0.44, respectively. Anopheles gambiae surviving discriminating concentrations of deltamethrin and p-methyl in WHO resistance tests were 57 and 96%, respectively. Mortality of free-flying An. gambiae in huts with p-methyl WL and NWH (66 and 50%, respectively) was higher than with pyrethroid WL (32%; P<0.001). Mortality with LLIN was 63%. Mortality with the combination of LLIN plus p-methyl NWH (61%) or LLIN plus p-methyl WL (73%) did not significantly improve upon the LLIN alone or p-methyl WL or NWH alone. Mosquitoes bearing the ace-1R were more likely to survive exposure to p-methyl WL and NWH. Selection of heterozygote and homozygote ace-1R or kdr genotypes was not less likely after exposure to combined LLIN and p-methyl treatments than to single p-methyl treatment. Blood-feeding rates were lower in huts with the pyrethroid LLIN (19%) than with p-methyl WL (72%) or NWH (76%); only LLIN contributed to personal protection. CONCLUSIONS: Combining p-methyl WL or NWH with LLINs provided no improvement in An. gambiae control or personal protection over LLIN alone in southern Côte d'Ivoire; neither did the combination manage resistance. Additional resistance mechanisms to kdr and ace-1R probably contributed to the survival of pyrethroid and organophophate-resistant mosquitoes. The study demonstrates the challenge that malaria control programmes will face if resistance to multiple insecticides continues to spread.
Asunto(s)
Anopheles , Resistencia a los Insecticidas , Insecticidas , Control de Mosquitos/métodos , Organofosfatos , Adulto , Animales , Femenino , Humanos , Mosquiteros Tratados con Insecticida , Malaria/prevención & control , Masculino , Compuestos OrganotiofosforadosRESUMEN
BACKGROUND: The wide-scale implementation of insecticide-treated nets and indoor residual spraying (IRS) has contributed to a considerable decrease of malaria morbidity and mortality in sub-Saharan Africa over the last decade. Due to increasing resistance in Anopheles gambiae sensu lato mosquitoes to dichlorodiphenyl trichloroethane (DDT) and pyrethroids, alternative insecticide formulations for IRS with long-lasting residual activity are required to sustain the gains obtained in most malaria-endemic countries. METHODS: Three experimental capsule suspension (CS) formulations of the organophosphate pirimiphos-methyl were evaluated together with Actellic 50 EC, an emulsifiable concentrate (EC) of pirimiphos-methyl, and the pyrethroid ICON 10 CS, a lambda-cyhalothrin CS formulation, in an experimental hut trial. The formulations were tested on two types of surfaces: mud and cement. The study with a 12-month follow-up was carried out in Bouaké, central Côte d'Ivoire, where An. gambiae mosquitoes show high levels of resistance against pyrethroids, DDT and carbamates. Residual activity was also tested in cone bioassays with the susceptible An. gambiae KISUMU strain. RESULTS: One of the CS formulations of pirimiphos-methyl, CS BM, outperformed all other formulations tested. On cement surfaces, the odds ratios of overall insecticidal effect on An. gambiae s.l. of pirimiphos-methyl CS BM compared to Actellic 50 EC were 1.4 (95% confidence interval (CI): 1.2-1.7) for the first three months, 5.6 (95% CI: 4.4-7.2) for the second three months, and 3.6 (95% CI: 3.0-4.4) for the last six months of follow-up. On mud surfaces, the respective odds ratios were 2.5 (95% CI: 1.9-3.3), 3.5 (95% CI: 2.7-4.5), and 1.7 (95% CI: 1.4-2.2). On cement, the residual activity of pirimiphos-methyl CS BM measured using cone tests was similar to that of lambda-cyhalothrin and for both treatments, mortality of susceptible Kisumu laboratory strain was not significantly below the World Health Organization pre-set threshold of 80% for 30 weeks after spraying. Residual activity was shorter on mud surfaces, mortality falling below 80% on both pirimiphos-methyl CS BM and lambda-cyhalothrin treated surfaces at 25 weeks post-treatment. CONCLUSION: CS formulations of pirimiphos-methyl are promising alternatives for IRS, as they demonstrate prolonged insecticidal effect and residual activity against malaria mosquitoes.
Asunto(s)
Anopheles/efectos de los fármacos , Insectos Vectores/efectos de los fármacos , Insecticidas/farmacología , Compuestos Organotiofosforados/farmacología , Animales , Anopheles/fisiología , Côte d'Ivoire , Piretrinas/farmacología , Análisis de SupervivenciaRESUMEN
BACKGROUND: Long-lasting treatment kits, designed to transform untreated nets into long-lasting insecticidal nets (LLINs), may facilitate high coverage with LLINs where non-treated nets are in place. In this study, the efficacy of ICON® Maxx (Syngenta) was evaluated under laboratory conditions and in an experimental hut trial in central Côte d'Ivoire, where Anopheles gambiae s.s. are resistant to pyrethroid insecticides. METHODS: In the laboratory, polyester and polyethylene net samples were treated with ICON® Maxx, washed up to 20 times and their efficacy determined in World Health Organization (WHO) cone assays against a susceptible laboratory An. gambiae s.s. colony. Over a 12-month period, the polyester nets were evaluated in a hut trial to determine mosquito deterrence, induced exophily, blood-feeding inhibition and mortality. RESULTS: In the laboratory, ICON® Maxx-treated polyethylene nets showed higher efficacy against pyrethroid-susceptible mosquitoes than polyester nets. After 20 washings, insecticidal efficacy in bioassays was 59.4% knockdown (KD) and 22.3% mortality for polyethylene, and 55.3% KD and 17.9% mortality for polyester nets. In experimental huts, treated nets showed strong deterrence, induced exophily and an over three-fold reduction in blood-fed mosquitoes. More than half (61.8%) of the mosquitoes entering the huts with treated nets were found dead the next morning despite high levels of KD resistance. After washing the treated nets, KD and mortality rates were close to or exceeded predefined WHO thresholds in cone bioassays. CONCLUSION: In contrast to previous laboratory investigation, ICON® Maxx-treated nets showed only moderate KD and mortality rates. However, under semi-field conditions, in an area where mosquitoes are resistant to pyrethroids, ICON® Maxx showed high deterrence, induced exophily and provided a significant reduction in blood-feeding rates; features that are likely to have a positive impact in reducing malaria transmission. The WHO cone test may not always be a good proxy for predicting product performance under field conditions.
Asunto(s)
Anopheles/efectos de los fármacos , Insecticidas/farmacología , Adolescente , Adulto , Animales , Bioensayo , Côte d'Ivoire , Conducta Alimentaria/efectos de los fármacos , Femenino , Humanos , Mosquiteros Tratados con Insecticida , Masculino , Control de Mosquitos/métodos , Análisis de Supervivencia , Adulto JovenRESUMEN
BACKGROUND: In Côte d'Ivoire, an estimated 767,000 disability-adjusted life years are due to malaria, placing the country at position number 14 with regard to the global burden of malaria. Risk maps are important to guide control interventions, and hence, the aim of this study was to predict the geographical distribution of malaria infection risk in children aged <16 years in Côte d'Ivoire at high spatial resolution. METHODS: Using different data sources, a systematic review was carried out to compile and geo-reference survey data on Plasmodium spp. infection prevalence in Côte d'Ivoire, focusing on children aged <16 years. The period from 1988 to 2007 was covered. A suite of Bayesian geo-statistical logistic regression models was fitted to analyse malaria risk. Non-spatial models with and without exchangeable random effect parameters were compared to stationary and non-stationary spatial models. Non-stationarity was modelled assuming that the underlying spatial process is a mixture of separate stationary processes in each ecological zone. The best fitting model based on the deviance information criterion was used to predict Plasmodium spp. infection risk for entire Côte d'Ivoire, including uncertainty. RESULTS: Overall, 235 data points at 170 unique survey locations with malaria prevalence data for individuals aged <16 years were extracted. Most data points (n = 182, 77.4%) were collected between 2000 and 2007. A Bayesian non-stationary regression model showed the best fit with annualized rainfall and maximum land surface temperature identified as significant environmental covariates. This model was used to predict malaria infection risk at non-sampled locations. High-risk areas were mainly found in the north-central and western area, while relatively low-risk areas were located in the north at the country border, in the north-east, in the south-east around Abidjan, and in the central-west between two high prevalence areas. CONCLUSION: The malaria risk map at high spatial resolution gives an important overview of the geographical distribution of the disease in Côte d'Ivoire. It is a useful tool for the national malaria control programme and can be utilized for spatial targeting of control interventions and rational resource allocation.
Asunto(s)
Malaria/epidemiología , Topografía Médica , Adolescente , Niño , Preescolar , Clima , Côte d'Ivoire/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Modelos Estadísticos , Medición de RiesgoRESUMEN
The effect of repeated applications of Bacillus thuringiensis var israeliensis (Bti) and B. sphaericus (Bs) on different entomologic parameters of malaria transmission was investigated in a village in central Côte d'Ivoire. The study area was monitored for potential mosquito breeding sites over a 7-month period. Microbial larvicides were applied once every 3 wk; first Bti (0.8 mg/liter), followed by Bs (10 mg/liter) 3-4 days later. Adult mosquitoes were collected inside and outside sentinel houses in 4 cross-sectional surveys using human landing catch. Repeated applications of Bti and Bs showed a decline in the biting rate of both Anopheles funestus and Anopheles gambiae. Moreover, the entomologic inoculation rate of An. funestus was significantly reduced (from 328 to 142, P = 0.005), whereas that of An. gambiae remained stable. In conclusion, microbial larvicides might play a role in an integrated approach for malaria control.
Asunto(s)
Bacillus thuringiensis , Culicidae/microbiología , Malaria/transmisión , Control de Mosquitos/métodos , Control Biológico de Vectores/métodos , Animales , Côte d'Ivoire/epidemiología , Larva/efectos de los fármacos , Malaria/prevención & control , Factores de TiempoRESUMEN
BACKGROUND: The effectiveness of pyrethroid-treated bednets for malaria control in sub-Saharan Africa is under threat because of high levels of resistance to pyrethroid insecticides in the vectors. Here we assess the durability of polyethylene nets with a novel combination of permethrin, a pyrethroid, with pyriproxyfen, an insect juvenile mimic (PPF-LLIN), in comparison with a typical permethrin-treated long-lasting insecticidal net (LLIN). METHODS: This is a cluster randomised controlled trial of net durability in Burkina Faso, with clustering at the level of the compound and includes entomological outcome measurements. Half the compounds in each village will be randomly allocated PPF-LLIN and half the LLIN. All sleeping places in a compound will be provided with one type of net. We will distribute the nets at the start of the first transmission season and follow net use at the start and end of each transmission season for 3 years. In one village, bio-efficacy and chemical content will be recorded immediately after net distribution and then at 6, 12, 18, 24, 30 and 36 months. In the other village net survivorship and fabric integrity will be recorded immediately after distribution, and then at 6, 12, 18, 24, 30 and 36 months. Routine measurements of indoor temperature and relative humidity will be made in both villages during the study. Residents will be followed for possible side effects of the PPF-LLIN by surveillance of known asthmatic subjects during the first month post-distribution and pregnancy outcomes will be monitored from antenatal clinic records. DISCUSSION: The protocol is novel on two accounts. Firstly, it is the first to describe the procedure for measuring net durability following recent World Health Organisation (WHO) guidelines. Meeting the minimum requirements set in the guidelines is essential before a new type of net can be recommended by WHO's Pesticide Evaluation Scheme (WHOPES). Secondly, it describes methods to monitor the persistence of an active ingredient that reduces vector fertility and fecundity. If the PPF-LLIN is both effective and persistent it will provide an alternative vector control strategy where pyrethroid-resistant vectors are present. TRIAL REGISTRATION: ISRCTN30634670 assigned 13 August 2014.
Asunto(s)
Anopheles/parasitología , Vectores de Enfermedades , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria/prevención & control , Control de Mosquitos/instrumentación , Permetrina , Piridinas , Animales , Burkina Faso , Falla de Equipo , Femenino , Humanos , Humedad , Mosquiteros Tratados con Insecticida/efectos adversos , Insecticidas/efectos adversos , Malaria/parasitología , Malaria/transmisión , Masculino , Permetrina/efectos adversos , Embarazo , Resultado del Embarazo , Piridinas/efectos adversos , Estaciones del Año , Temperatura , Factores de TiempoRESUMEN
BACKGROUND: New approaches to delivering insecticides need to be developed to improve malaria vector control. Insecticidal durable wall lining (DL) and net wall hangings (NWH) are novel alternatives to indoor residual spraying which can be produced in a long-lasting format. Non-pyrethroid versions could be used in combination with long-lasting insecticidal nets for improved control and management of insecticide resistant vector populations. METHODS: Experimental hut trials were carried out in Valley du Kou, Burkina Faso to evaluate the efficacy of pirimiphos methyl treated DL and NWH either alone or in combination with LLINs against pyrethroid resistant Anopheles gambiae ss. Comparison was made with pyrethroid DL. Mosquitoes were genotyped for kdr and ace-1R resistant genes to investigate the insecticide resistance management potential of the combination. RESULTS: The overall kdr and ace-1(R) allele frequencies were 0.95 and 0.01 respectively. Mortality with p-methyl DL and NWH alone was higher than with pyrethroid DL alone (>95% vs 40%; P<0.001). Combining pyrethroid DL with LLINs did not show improvement in mortality (48%) compared to the LLIN alone (44%) (P>0.1). Combining p-methyl DL or NWH with LLINs reduced biting rates significantly (8-9%) compared to p-methyl DL and NWH alone (>40%) and killed all An gambiae that entered the huts. Mosquitoes bearing the ace-1(R) gene were more likely to survive in huts with p-methyl DL alone (p<0.03) whereas all resistant and susceptible genotypes were killed by the combination. CONCLUSION: P-methyl DL and NWH outperformed pyrethroid DL. Combining p-methyl DL and NWH with LLINs could provide significant epidemiological benefits against a vector population which is resistant to pyrethroids but susceptible to organophosphates. There was evidence that the single intervention would select kdr and ace-1(R) resistance genes and the combination intervention might select less strongly. Technology to bind organophosphates to plastic wall lining would be worth developing.