Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurotrauma ; 41(3-4): 407-419, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37950721

RESUMEN

The perivascular space (PVS) is important to brain waste clearance and brain metabolic homeostasis. Enlarged PVS (ePVS) becomes visible on magnetic resonance imaging (MRI) and is best appreciated on T2-weighted (T2w) images. However, quantification of ePVS is challenging because standard-of-care T1-weighted (T1w) and T2w images are often obtained via two-dimensional (2D) acquisition, whereas accurate quantification of ePVS normally requires high-resolution volumetric three-dimensional (3D) T1w and T2w images. The purpose of this study was to investigate the use of a deep-learning-based super-resolution (SR) technique to improve ePVS quantification from 2D T2w images for application in patients with traumatic brain injury (TBI). We prospectively recruited 26 volunteers (age: 31 ± 12 years, 12 male/14 female) where both 2D T2w and 3D T2w images were acquired along with 3D T1w images to validate the ePVS quantification using SR T2w images. We then applied the SR method to retrospectively acquired 2D T2w images in 41 patients with chronic TBI (age: 41 ± 16 years, 32 male/9 female). ePVS volumes were automatically quantified within the whole-brain white matter and major brain lobes (temporal, parietal, frontal, occipital) in all subjects. Pittsburgh Sleep Quality Index (PSQI) scores were obtained on all patients with TBI. Compared with the silver standard (3D T2w), in the validation study, the SR T2w provided similar whole-brain white matter ePVS volume (r = 0.98, p < 0.0001), and similar age-related ePVS burden increase (r = 0.80, p < 0.0001). In the patient study, patients with TBI with poor sleep showed a higher age-related ePVS burden increase than those with good sleep. Sleep status is a significant interaction factor in the whole brain (p = 0.047) and the frontal lobe (p = 0.027). We demonstrate that images produced by SR of 2D T2w images can be automatically analyzed to produce results comparable to those obtained by 3D T2 volumes. Reliable age-related ePVS burden across the whole-brain white matter was observed in all subjects. Poor sleep, affecting the glymphatic function, may contribute to the accelerated increase of ePVS burden following TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sistema Glinfático , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sistema Glinfático/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen
2.
medRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38854000

RESUMEN

Traumatic brain injury (TBI) even in the mild form may result in long-lasting post-concussion symptoms. TBI is also a known risk to late-life neurodegeneration. Recent studies suggest that dysfunction in the glymphatic system, responsible for clearing protein waste from the brain, may play a pivotal role in the development of dementia following TBI. Given the diverse nature of TBI, longitudinal investigations are essential to comprehending the dynamic changes in the glymphatic system and its implications for recovery. In this prospective study, we evaluated two promising glymphatic imaging markers, namely the enlarged perivascular space (ePVS) burden and Diffusion Tensor Imaging-based ALPS index, in 44 patients with mTBI at two early post-injury time points: approximately 14 days (14Day) and 6-12 months (6-12Mon) post-injury, while also examining their associations with post-concussion symptoms. Additionally, 37 controls, comprising both orthopedic patients and healthy individuals, were included for comparative analysis. Our key findings include: 1) White matter ePVS burden (WM-ePVS) and ALPS index exhibit significant correlations with age. 2) Elevated WM-ePVS burden in acute mTBI (14Day) is significantly linked to a higher number of post-concussion symptoms, particularly memory problems. 3) The increase in the ALPS index from acute (14Day) to the chronic (6-12Mon) phases in mTBI patients correlates with improvement in sleep measures. Furthermore, incorporating WM-ePVS burden and the ALPS index from acute phase enhances the prediction of chronic memory problems beyond socio-demographic and basic clinical information, highlighting their distinct roles in assessing glymphatic structure and activity. Early evaluation of glymphatic function could be crucial for understanding TBI recovery and developing targeted interventions to improve patient outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA