Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
APL Bioeng ; 2(4): 046105, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31069327

RESUMEN

Monitoring cell metabolism in vitro is considered a relevant methodology in several scientific fields ranging from fundamental biology research to neuro-toxicology. In the last 20 years, several in vitro neuro-pharmacological and neuro-toxicological approaches have been developed, with the intent of addressing the increasing demand for real-time, non-invasive in vitro systems capable of continuously and reliably monitoring cellular activity. In this paper, an Organic Charge Modulated Field Effect Transistor-based device is proposed as a promising tool for neuro-pharmacological applications, thanks to its ultra-high pH sensitivity and a simple fabrication technology. The preliminary characterization of this versatile organic device with primary neuronal cultures shows how these remarkable properties can be exploited for the realization of ultra-sensitive metabolic probes, which are both reference-less and low cost. These features, together with the already assessed capability of this sensor to also monitor the electrical activity of electrogenic cells, could provide important advances in the fabrication of multi-sensing lab-on-chip devices, thus opening up interesting perspectives in the neuro-pharmacological field.

2.
Biosens Bioelectron ; 18(5-6): 621-6, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12706571

RESUMEN

In the last decade, fundamental advances in whole cell based sensors and microsystems have established the extracellular acidification rate monitoring of cell cultures as an important indicator of the global cellular metabolism. Innovative approaches adopting advanced integrated sensor array-based microsystems represent an emerging technique with numerous biomedical applications. This paper reports a cell-based microsystem, for multisite monitoring of the physiological state of cell populations. The functional components of the microsystem are an ion sensitive field effect transistor (ISFET) array-based sensor chip and a CMOS integrated circuit for signal conditioning and sensor signal multiplexing. In order to validate the microsystem capabilities for in-vitro toxicity screening applications, preliminary experimental measurements with Cheratinocytes, and CHO cells are presented. Variations in the acidification rate, imputable to the inhibitory effect of the drug on the metabolic cell activity have been monitored and cell viability during long term measurements has been also demonstrated.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Electroquímica/instrumentación , Citometría de Flujo/instrumentación , Queratinocitos/química , Queratinocitos/metabolismo , Pruebas de Toxicidad/instrumentación , Transductores , Animales , Células CHO/química , Células CHO/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Línea Celular , Cricetinae , Cricetulus , Electroquímica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Citometría de Flujo/métodos , Concentración de Iones de Hidrógeno , Queratinocitos/efectos de los fármacos , Miniaturización , Ouabaína/toxicidad , Polilisina/farmacología , Semiconductores , Procesamiento de Señales Asistido por Computador/instrumentación , Pruebas de Toxicidad/métodos
3.
Front Neuroeng ; 4: 4, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21562604

RESUMEN

Neuronal assemblies within the nervous system produce electrical activity that can be recorded in terms of action potential patterns. Such patterns provide a sensitive endpoint to detect effects of a variety of chemical and physical perturbations. They are a function of synaptic changes and do not necessarily involve structural alterations. In vitro neuronal networks (NNs) grown on micro-electrode arrays (MEAs) respond to neuroactive substances as well as the in vivo brain. As such, they constitute a valuable tool for investigating changes in the electrophysiological activity of the neurons in response to chemical exposures. However, the reproducibility of NN responses to chemical exposure has not been systematically documented. To this purpose six independent laboratories (in Europe and in USA) evaluated the response to the same pharmacological compounds (Fluoxetine, Muscimol, and Verapamil) in primary neuronal cultures. Common standardization principles and acceptance criteria for the quality of the cultures have been established to compare the obtained results. These studies involved more than 100 experiments before the final conclusions have been drawn that MEA technology has a potential for standard in vitro neurotoxicity/neuropharmacology evaluation. The obtained results show good intra- and inter-laboratory reproducibility of the responses. The consistent inhibitory effects of the compounds were observed in all the laboratories with the 50% Inhibiting Concentrations (IC(50)s) ranging from: (mean ± SEM, in µM) 1.53 ± 0.17 to 5.4 ± 0.7 (n = 35) for Fluoxetine, 0.16 ± 0.03 to 0.38 ± 0.16 µM (n = 35) for Muscimol, and 2.68 ± 0.32 to 5.23 ± 1.7 (n = 32) for Verapamil. The outcome of this study indicates that the MEA approach is a robust tool leading to reproducible results. The future direction will be to extend the set of testing compounds and to propose the MEA approach as a standard screen for identification and prioritization of chemicals with neurotoxicity potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA