Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mech Dev ; 92(1): 55-81, 2000 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10704888

RESUMEN

To form a diffusible interface large enough to conduct respiratory gas exchange with the circulation, the lung endoderm undergoes extensive branching morphogenesis and alveolization, coupled with angiogenesis and vasculogenesis. It is becoming clear that many of the key factors determining the process of branching morphogenesis, particularly of the respiratory organs, are highly conserved through evolution. Synthesis of information from null mutations in Drosophila and mouse indicates that members of the sonic hedgehog/patched/smoothened/Gli/FGF/FGFR/sprouty pathway are functionally conserved and extremely important in determining respiratory organogenesis through mesenchymal-epithelial inductive signaling, which induces epithelial proliferation, chemotaxis and organ-specific gene expression. Transcriptional factors including Nkx2.1, HNF family forkhead homologues, GATA family zinc finger factors, pou and hox, helix-loop-helix (HLH) factors, Id factors, glucocorticoid and retinoic acid receptors mediate and integrate the developmental genetic instruction of lung morphogenesis and cell lineage determination. Signaling by the IGF, EGF and TGF-beta/BMP pathways, extracellular matrix components and integrin signaling pathways also directs lung morphogenesis as well as proximo-distal lung epithelial cell lineage differentiation. Soluble factors secreted by lung mesenchyme comprise a 'compleat' inducer of lung morphogenesis. In general, peptide growth factors signaling through cognate receptors with tyrosine kinase intracellular signaling domains such as FGFR, EGFR, IGFR, PDGFR and c-met stimulate lung morphogenesis. On the other hand, cognate receptors with serine/threonine kinase intracellular signaling domains, such as the TGF-beta receptor family are inhibitory, although BMP4 and BMPR also play key inductive roles. Pulmonary neuroendocrine cells differentiate earliest in gestation from among multipotential lung epithelial cells. MASH1 null mutant mice do not develop PNE cells. Proximal and distal airway epithelial phenotypes differentiate under distinct transcriptional control mechanisms. It is becoming clear that angiogenesis and vasculogenesis of the pulmonary circulation and capillary network are closely linked with and may be necessary for lung epithelial morphogenesis. Like epithelial morphogenesis, pulmonary vascularization is subject to a fine balance between positive and negative factors. Angiogenic and vasculogenic factors include VEGF, which signals through cognate receptors flk and flt, while novel anti-angiogenic factors include EMAP II.


Asunto(s)
Pulmón/embriología , Animales , Biomarcadores , Linaje de la Célula , Quimiotaxis , Drosophila , Humanos , Mesodermo , Ratones , Modelos Biológicos , Morfogénesis , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/fisiología
2.
Mech Dev ; 102(1-2): 81-94, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11287183

RESUMEN

Experimental evidence is rapidly emerging that the coupling of positive regulatory signals with the induction of negative feedback modulators is a mechanism of fine regulation in development. Studies in Drosophila and chick have shown that members of the SPROUTY family are inducible negative regulators of growth factors that act through tyrosine kinase receptors. We and others have shown that Fibroblast Growth Factor 10 (FGF10) is a key positive regulator of lung branching morphogenesis. Herein, we provide direct evidence that mSprouty2 is dynamically expressed in the peripheral endoderm in embryonic lung and is downregulated in the clefts between new branches at E12.5. We found that mSprouty2 was expressed in a domain restricted in time and space, adjacent to that of Fgf10 in the peripheral mesenchyme. By E14.5, Fgf10 expression was restricted to a narrow domain of mesenchyme along the extreme edges of the individual lung lobes, whereas mSprouty2 was most highly expressed in the subjacent epithelial terminal buds. FGF10 beads upregulated the expression of mSprouty2 in adjacent epithelium in embryonic lung explant culture. Lung cultures treated with exogenous FGF10 showed greater branching and higher levels of mSpry2 mRNA. Conversely, Fgf10 antisense oligonucleotides reduced branching and decreased mSpry2 mRNA levels. However, treatment with exogenous FGF10 or antisense Fgf10 did not change Shh and FgfR2 mRNA levels in the lungs. We investigated Sprouty2 function during lung development by two different but complementary approaches. The targeted overexpression of mSprouty2 in the peripheral lung epithelium in vivo, using the Surfactant Protein C promoter, resulted in a low level of branching, lung lobe edges abnormal in appearance and the inhibition of epithelial proliferation. Transient high-level overexpression of mSpry2 throughout the pulmonary epithelium by intra-tracheal adenovirus microinjection also resulted in a low level of branching. These results indicate for the first time that mSPROUTY2 functions as a negative regulator of embryonic lung morphogenesis and growth.


Asunto(s)
Pulmón/embriología , Pulmón/metabolismo , Proteínas del Tejido Nervioso/fisiología , Adenoviridae/genética , Animales , División Celular , Células Epiteliales/metabolismo , Factor 10 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Genotipo , Humanos , Pulmón/citología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Oligonucleótidos Antisentido , Técnicas de Cultivo de Órganos , Plásmidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteolípidos/genética , Surfactantes Pulmonares/genética , ARN Mensajero/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Regulación hacia Arriba
3.
Dev Med Child Neurol ; 41(10): 665-70, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10587042

RESUMEN

Independent mobility in early childhood has been associated with the development of various cognitive and psychosocial skills. However, children with physical disabilities are not always able to move independently and may be at risk for delays in these areas. Early provision of powered mobility can offer young children an opportunity for independent mobility. Despite this, there is little information to help determine when a young child has the cognitive skills necessary to operate a powered wheelchair safely. This current research aims to identify these skills. A cognitive assessment battery and a wheelchair mobility training and assessment program were developed. Twenty-six children with physical disabilities between the ages of 20 and 36 months were evaluated on the cognitive assessment and participated in the wheelchair training and assessment program. A stepwise regression analysis was used to determine which of the cognitive skills predicted wheelchair mobility performance. The cognitive domains of spatial relations and problem solving were found to be significant and accounted for 57% of the variance in wheelchair skills. Developmental cut-off points on these scales as they relate to wheelchair skills are presented and clinical applications are discussed.


Asunto(s)
Cognición/clasificación , Niños con Discapacidad , Destreza Motora/clasificación , Silla de Ruedas , Desarrollo Infantil , Preescolar , Femenino , Humanos , Lactante , Masculino , Selección de Paciente , Pronóstico , Análisis de Regresión
4.
Am J Physiol Lung Cell Mol Physiol ; 283(4): L700-6, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12225946

RESUMEN

Murine Sprouty2 (mSpry2) is a conserved ortholog of Drosophila Sprouty, a gene that inhibits several tyrosine kinase receptor pathways, resulting in net reduction of mitogen-activated protein (MAP) kinase activation. However, the precise mechanism mediating mSpry2 function as a negative regulator in tyrosine kinase growth factor pathways that regulate diverse biological functions remains incompletely characterized. Fibroblast growth factor 10 (FGF10) is a key positive regulator of lung branching morphogenesis and induces epithelial expression of mSpry2 adjacent to mesenchymal sites of FGF10. Herein, we demonstrate that FGF10 stimulation of mouse lung epithelial cells (MLE15) overexpressing mSpry2 results in both mSpry2 tyrosine phosphorylation and differential binding of mSpry2 to several key upstream target proteins in the MAP kinase-activating pathway. Thus FGF receptor (FGFR) activation results in increased association of mSpry2 with growth factor receptor-binding protein 2, suc-1-associated nuerotrophic factor target 2, and Raf but decreased binding to protein tyrosine phosphatase 2 and GTPase-activating protein 1, resulting in a net reduction of MAP kinase activation. mSpry2 also spatially translocates to the plasma membrane and intracellular membrane structures in response to FGF10 stimulation. Our data demonstrate novel intracellular mechanisms mediating mSpry2 function as a negative regulator of uncontrolled FGF-induced MAP kinase signaling.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/farmacología , Mucosa Respiratoria/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Células Cultivadas , Expresión Génica/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Fosforilación , Mucosa Respiratoria/citología , Tirosina/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 281(1): L250-7, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11404268

RESUMEN

We evaluated the role of the key pulmonary morphogenetic gene fibroblast growth factor-10 (Fgf10) in murine nitrofen-induced primary lung hypoplasia, which is evident before the time of diaphragm closure. In situ hybridization and competitive RT-PCR revealed a profound disturbance in the temporospatial pattern as well as a 10-fold decrease in mRNA expression level of Fgf10 but not of the inducible inhibitor murine Sprouty2 (mSpry2) after nitrofen treatment. Exogenous FGF-10 increased branching not only of control lungs [13% (right) and 27% (left); P < 0.01] but also of nitrofen-exposed lungs [23% (right) and 77% (left); P < 0.01]. Expression of mSpry2 increased 10-fold with FGF-10 in both nitrofen-treated and control lungs, indicating intact downstream FGF signaling mechanisms after nitrofen treatment. We conclude that nitrofen inhibits Fgf10 expression, which is essential for lung growth and branching. Exogenous FGF-10 not only stimulates FGF signaling, marked by increased mSpry2 expression, in both nitrofen-treated and control lungs but also substantially rescues nitrofen-induced lung hypoplasia in culture.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacología , Pulmón/embriología , Pulmón/patología , Éteres Fenílicos/farmacología , Proteínas Adaptadoras Transductoras de Señales , Animales , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiología , Desarrollo Embrionario y Fetal/efectos de los fármacos , Factor 10 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Pulmón/efectos de los fármacos , Proteínas de la Membrana , Ratones , Proteínas Serina-Treonina Quinasas , Proteínas/genética , ARN Mensajero/metabolismo , Distribución Tisular
6.
Am J Respir Crit Care Med ; 164(10 Pt 2): S59-62, 2001 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-11734468

RESUMEN

Herein we posit that modeling of the lungs during morphogenesis, repair, and regeneration is tightly coordinated by conserved stimulatory and inhibitory signaling mechanisms, including specific transcriptional factors, cytokines, peptide growth factors, proteases, and matrix elements. This evolutionary-developmental (evo-devo) functional conservation has been extended to morphogenesis of the respiratory tracheae in Drosophila. Fifty or more genes direct fruit fly tracheal organogenesis. Among them, hedgehog, patched, smoothened, cubitus interruptus, branchless, breathless, sprouty, decapentaplegic, and mad are functionally conserved between flies, mice, and humans. For example, fibroblast growth factor (FGF) signaling is essential, not only for fly trachea and mouse bronchial branching morphogenesis, but also for postnatal modeling and repair of alveoli. Likewise, sprouty family genes act as inducible negative regulators of FGF signaling, which in part may determine interbranch length during bronchial development. Alveolar epithelial survival, migration, and proliferation during remodeling after hyperoxic injury also require FGF signaling. In addition, FGF signaling appears to regulate a small (< 5%) population of putative alveolar stem/ progenitor cells that express telomerase and are relatively resistant to hyperoxic apoptosis. We speculate that genes in evo-devo functionally conserved signaling pathways such as FGF-FGF receptor-Sprouty may provide novel therapeutic targets to augment lung repair and induce lung regeneration.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Pulmón/fisiología , Morfogénesis , Regeneración , Sistema Respiratorio/embriología , Adulto , Animales , Bronquios/embriología , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Movimiento Celular , Células Cultivadas , Dípteros/embriología , Dípteros/genética , Drosophila/embriología , Drosophila/genética , Epítopos , Evolución Molecular , Factores de Crecimiento de Fibroblastos/genética , Edad Gestacional , Humanos , Hibridación in Situ , Recién Nacido , Pulmón/embriología , Ratones , Mutación , Fenotipo , Alveolos Pulmonares/citología , Ratas , Células Madre/fisiología , Tráquea/embriología , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA