Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(33): e2306338120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549282

RESUMEN

NADPH-dependent thioredoxin reductase C (NTRC) is a chloroplast redox regulator in algae and plants. Here, we used site-specific mutation analyses of the thioredoxin domain active site of NTRC in the green alga Chlamydomonas reinhardtii to show that NTRC mediates cold tolerance in a redox-dependent manner. By means of coimmunoprecipitation and mass spectrometry, a redox- and cold-dependent binding of the Calvin-Benson Cycle Protein 12 (CP12) to NTRC was identified. NTRC was subsequently demonstrated to directly reduce CP12 of C. reinhardtii as well as that of the vascular plant Arabidopsis thaliana in vitro. As a scaffold protein, CP12 joins the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to form an autoinhibitory supracomplex. Using size-exclusion chromatography, NTRC from both organisms was shown to control the integrity of this complex in vitro and thereby PRK and GAPDH activities in the cold. Thus, NTRC apparently reduces CP12, hence triggering the dissociation of the PRK/CP12/GAPDH complex in the cold. Like the ntrc::aphVIII mutant, CRISPR-based cp12::emx1 mutants also exhibited a redox-dependent cold phenotype. In addition, CP12 deletion resulted in robust decreases in both PRK and GAPDH protein levels implying a protein protection effect of CP12. Both CP12 functions are critical for preparing a repertoire of enzymes for rapid activation in response to environmental changes. This provides a crucial mechanism for cold acclimation.


Asunto(s)
Chlamydomonas reinhardtii , Fotosíntesis , Reductasa de Tiorredoxina-Disulfuro , Aclimatación , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Oxidación-Reducción , Fotosíntesis/fisiología , Reductasa de Tiorredoxina-Disulfuro/metabolismo
2.
Plant J ; 111(6): 1780-1800, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35899410

RESUMEN

The dihydrolipoamide acetyltransferase subunit DLA2 of the chloroplast pyruvate dehydrogenase complex (cpPDC) in the green alga Chlamydomonas reinhardtii has previously been shown to possess moonlighting activity in chloroplast gene expression. Under mixotrophic growth conditions, DLA2 forms part of a ribonucleoprotein particle (RNP) with the psbA mRNA that encodes the D1 protein of the photosystem II (PSII) reaction center. Here, we report on the characterization of the molecular switch that regulates shuttling of DLA2 between its functions in carbon metabolism and D1 synthesis. Determination of RNA-binding affinities by microscale thermophoresis demonstrated that the E3-binding domain (E3BD) of DLA2 mediates psbA-specific RNA recognition. Analyses of cpPDC formation and activity, as well as RNP complex formation, showed that acetylation of a single lysine residue (K197) in E3BD induces the release of DLA2 from the cpPDC, and its functional shift towards RNA binding. Moreover, Förster resonance energy transfer microscopy revealed that psbA mRNA/DLA2 complexes localize around the chloroplast's pyrenoid. Pulse labeling and D1 re-accumulation after induced PSII degradation strongly suggest that DLA2 is important for D1 synthesis during de novo PSII biogenesis.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Acetilación , Carbono/metabolismo , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Lisina/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo
3.
Mol Cancer Ther ; 18(3): 693-705, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30824582

RESUMEN

Metformin has been extensively studied for its impact on cancer cell metabolism and anticancer potential. Despite evidence of significant reduction in cancer occurrence in diabetic patients taking metformin, phase II cancer trials of the agent have been disappointing, quite possibly because of the lack of molecular mechanism-based patient stratification. In an effort to identify cancers that are responsive to metformin, we discovered that mitochondria respiratory capacity and respiratory reserve, which vary widely among cancer cells, correlate strongly to metformin sensitivity in both the in vitro and in vivo settings. A causal relationship between respiratory function and metformin sensitivity is demonstrated in studies in which we lowered respiratory capacity by either genetic knockdown or pharmacologic suppression of electron transport chain components, rendering cancer cells more vulnerable to metformin. These findings led us to predict, and experimentally validate, that metformin and AMP kinase inhibition synergistically suppress cancer cell proliferation.


Asunto(s)
Transporte de Electrón/genética , Metformina/farmacología , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Xenoinjertos , Humanos , Metformina/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Neoplasias/genética , Neoplasias/metabolismo , Oxidación-Reducción/efectos de los fármacos
4.
Mol Cancer Ther ; 16(5): 914-923, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28167504

RESUMEN

Pancreatic cancer remains one of the most difficult to treat human cancers despite recent advances in targeted therapy. Inhibition of isoprenylcysteine carboxylmethyltransferase (ICMT), an enzyme that posttranslationally modifies a group of proteins including several small GTPases, suppresses proliferation of some human cancer cells. However, the efficacy of ICMT inhibition on human pancreatic cancer has not been evaluated. In this study, we have evaluated a panel of human pancreatic cancer cell lines and identified those that are sensitive to ICMT inhibition. In these cells, ICMT suppression inhibited proliferation and induced apoptosis. This responsiveness to ICMT inhibition was confirmed in in vivo xenograft tumor mouse models using both a small-molecule inhibitor and shRNA-targeting ICMT. Mechanistically, we found that, in sensitive pancreatic cancer cells, ICMT inhibition induced mitochondrial respiratory deficiency and cellular energy depletion, leading to significant upregulation of p21. Furthermore, we characterized the role of p21 as a regulator and coordinator of cell signaling that responds to cell energy depletion. Apoptosis, but not autophagy, that is induced via p21-activated BNIP3 expression accounts for the efficacy of ICMT inhibition in sensitive pancreatic cancer cells in both in vitro and in vivo models. In contrast, cells resistant to ICMT inhibition demonstrated no mitochondria dysfunction or p21 signaling changes under ICMT suppression. These findings not only identify pancreatic cancers as potential therapeutic targets for ICMT suppression but also provide an avenue for identifying those subtypes that would be most responsive to agents targeting this critical enzyme. Mol Cancer Ther; 16(5); 914-23. ©2017 AACR.


Asunto(s)
Proteínas de la Membrana/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Proteína Metiltransferasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al GTP rho/genética , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/administración & dosificación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteína Metiltransferasas/genética , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
5.
PLoS One ; 9(12): e115087, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25546383

RESUMEN

FoxO proteins are important regulators in cellular metabolism and are recognized to be nodes in multiple signaling pathways, most notably those involving PI3K/AKT and mTOR. FoxO proteins primarily function as transcription factors, but recent study suggests that cytosolic FoxO1 participates in the regulation of autophagy. In the current study, we find that cytosolic FoxO1 indeed stimulates cellular autophagy in multiple cancer cell lines, and that it regulates not only basal autophagy but also that induced by rapamycin and that in response to nutrient deprivation. These findings illustrate the importance of FoxO1 in cell metabolism regulation independent of its transcription factor function. In contrast to FoxO1, we find the closely related FoxO3a is a negative regulator of autophagy in multiple cancer cell lines, a previously unrecognized function for this protein, different from its function in benign fibroblast and muscle cells. The induction of autophagy by the knockdown of FoxO3a was found not to be mediated through the suppression of mTORC1 signaling; rather, the regulatory role of FoxO3a on autophagy was determined to be through its ability to transcriptionally suppress FoxO1. This complicated interplay of FoxO1 and FoxO3a suggests a complex checks- and balances-relationship between FoxO3a and FoxO1 in regulating autophagy and cell metabolism.


Asunto(s)
Autofagia , Factores de Transcripción Forkhead/metabolismo , Línea Celular Tumoral , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA