Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Infect Immun ; 90(1): e0049221, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34694919

RESUMEN

Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira, while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component in the optimization of vaccine strategies. Bovine γδ T cells proliferate and produce gamma interferon (IFN-γ) in response to vaccination with inactivated leptospires, and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine-rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identify two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ γδ T cells respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Leptospira/inmunología , Leptospirosis/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Subgrupos de Linfocitos T/inmunología , Desarrollo de Vacunas , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/prevención & control , Inmunización , Inmunofenotipificación , Leptospirosis/microbiología , Leptospirosis/prevención & control , Ligandos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes , Subgrupos de Linfocitos T/metabolismo , Vacunas Sintéticas/inmunología
2.
Int J Med Microbiol ; 309(2): 116-129, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30638770

RESUMEN

Leptospirosis is a severe zoonosis caused by pathogenic species of the genus Leptospira. This work focuses on a hypothetical protein of unknown function, encoded by the gene LIC13259, and predicted to be a surface protein, widely distributed among pathogenic leptospiral strain. The gene was amplified from L. interrogans serovar Copenhageni, strain Fiocruz L1-130, cloned and the protein expressed using Escherichia coli as a host system. Immunofluorescence assay showed that the protein is surface-exposed. The recombinant protein LIC13259 (rLIC13259) has the ability to interact with the extracellular matrix (ECM) laminin, in a dose-dependent manner but saturation was not reach. The rLIC13259 protein is a plasminogen (PLG)-binding protein, generating plasmin, in the presence of urokinase PLG-activator uPA. The recombinant protein is able to mediate the binding to human purified terminal complement route vitronectin, C7, C8 and C9, and to recruit and interact with these components from normal human serum (NHS). These interactions are dose-dependent on NHS increased concentration. The binding of rLIC13259 to C8 and vitronectin was slight and pronounced inhibited in the presence of increasing heparin concentration, respectively, suggesting that the interaction with vitronectin occurs via heparin domain. Most interesting, the interaction of rLIC13259 with C9 protein was capable of preventing C9 polymerization, suggesting that the membrane attack complex (MAC) formation was inhibited. Thus, we tentatively assign the coding sequence (CDS) LIC13259, previously annotated as unknown function, as a novel protein that may play an important role in the host's invasion and immune evasion processes, contributing to the establishment of the leptospiral infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas del Sistema Complemento/metabolismo , Leptospira interrogans/metabolismo , Plasminógeno/metabolismo , Vitronectina/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Expresión Génica , Humanos , Laminina/metabolismo , Leptospira interrogans/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Unión Proteica , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
3.
J Nat Prod ; 79(5): 1316-21, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27192014

RESUMEN

Acyl-homoserine lactones (AHLs) are a class of compounds produced by Gram-negative bacteria that are used in a process of chemical communication called quorum sensing. Much is known about how bacteria use these chemical compounds to control the expression of important factors; however, there have been few reports about the presence and effects of AHLs in plants. In this study, the phytochemical study of leaves and culms of sugar cane (Saccharum × officinarum) led to the identification of N-(3-oxo-octanoyl)homoserine lactone. Since the absolute configuration of the natural product could not be determined, both R and S enantiomers of N-(3-oxo-octanoyl)homoserine lactone were synthesized and tested in sugar cane culms. The enantiomers caused changes in the mass and length of buds and roots when used at micromolar concentrations. Using the sugar cane RB96-6928 variety, the S enantiomer increased sprouting of roots more effectively than the R enantiomer. Furthermore, scanning electron microscopy showed that both the R and S enantiomers led to more stretched root cells compared with the control.


Asunto(s)
4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Acil-Butirolactonas/farmacología , Saccharum/química , 4-Butirolactona/síntesis química , 4-Butirolactona/química , Acil-Butirolactonas/química , Bacterias Gramnegativas/metabolismo , Estructura Molecular , Raíces de Plantas/química , Percepción de Quorum/efectos de los fármacos , Estereoisomerismo
4.
Front Microbiol ; 14: 1199660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426019

RESUMEN

Introduction: Leptospirosis is a worldwide zoonosis caused by pathogenic and virulent species of the genus Leptospira, whose pathophysiology and virulence factors remain widely unexplored. Recently, the application of CRISPR interference (CRISPRi) has allowed the specific and rapid gene silencing of major leptospiral proteins, favoring the elucidation of their role in bacterial basic biology, host-pathogen interaction and virulence. Episomally expressed dead Cas9 from the Streptococcus pyogenes CRISPR/Cas system (dCas9) and single-guide RNA recognize and block transcription of the target gene by base pairing, dictated by the sequence contained in the 5' 20-nt sequence of the sgRNA. Methods: In this work, we tailored plasmids for silencing the major proteins of L. interrogans serovar Copenhageni strain Fiocruz L1-130, namely LipL32, LipL41, LipL21 and OmpL1. Double- and triple-gene silencing by in tandem sgRNA cassettes were also achieved, despite plasmid instability. Results: OmpL1 silencing resulted in a lethal phenotype, in both L. interrogans and saprophyte L. biflexa, suggesting its essential role in leptospiral biology. Mutants were confirmed and evaluated regarding interaction with host molecules, including extracellular matrix (ECM) and plasma components, and despite the dominant abundance of the studied proteins in the leptospiral membrane, protein silencing mostly resulted in unaltered interactions, either because they intrinsically display low affinity to the molecules assayed or by a compensation mechanism, where other proteins could be upregulated to fill the niche left by protein silencing, a feature previously described for the LipL32 mutant. Evaluation of the mutants in the hamster model confirms the augmented virulence of the LipL32 mutant, as hinted previously. The essential role of LipL21 in acute disease was demonstrated, since the LipL21 knockdown mutants were avirulent in the animal model, and even though mutants could still colonize the kidneys, they were found in markedly lower numbers in the animals' liver. Taking advantage of higher bacterial burden in LipL32 mutant-infected organs, protein silencing was demonstrated in vivo directly in leptospires present in organ homogenates. Discussion: CRISPRi is now a well-established, attractive genetic tool that can be applied for exploring leptospiral virulence factors, leading to the rational for designing more effective subunit or even chimeric recombinant vaccines.

5.
Trop Med Infect Dis ; 8(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235297

RESUMEN

Pathogenic leptospires can bind to receptors on mammalian cells such as cadherins and integrins. Leptospira effectively adheres to cells, overcomes host barriers and spreads into the bloodstream, reaching internal target organs such as the lungs, liver and kidneys. Several microorganisms produce proteins that act as ligands of integrins through the RGD motif. Here, we characterized a leptospiral RGD-containing protein encoded by the gene lic12254. In silico analysis of pathogenic, intermediate and saprophytic species showed that LIC12254 is highly conserved among pathogenic species, and is unique in presenting the RGD motif. The LIC12254-coding sequence is greatly expressed in the virulent Leptospira interrogans L1-130 strain compared with the culture-attenuated L. interrogans M20 strain. We also showed that the recombinant protein rLIC12254 binds to αVß8 and α8 human integrins most likely via the RGD motif. These interactions are dose-dependent and saturable, a typical property of receptor-ligand interactions. The binding of the recombinant protein lacking this motif-rLIC12254 ΔRAA-to αVß8 was almost totally abolished, while that with the α8 human integrin was decreased by 65%. Taken together, these results suggest that this putative outer membrane protein interacts with integrins via the RGD domain and may play a key role in leptospirosis pathogenesis.

6.
Pathogens ; 12(10)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37887707

RESUMEN

Leptospirosis is a global zoonosis caused by pathogenic bacteria of the genus Leptospira. The application of the CRISPR/Cas9 system has facilitated the generation of mutants and subsequent evaluation of phenotypes. Since DNA breaks induced by RNA-guided Cas9 nuclease are lethal to Leptospira, different methodologies were implemented to overcome this limitation. Initially, CRISPR interference (CRISPRi) was employed to create knockdown mutants, utilizing a catalytically inactive Cas9 (dCas9). Subsequently, the co-expression of CRISPR/Cas9 and a DNA repair system from Mycobacterium smegmatis enabled the generation of scarless knockout mutants. We eliminated plasmids from the lipL32 knockout L. interrogans strain and further achieved multiple gene mutations via gene silencing in this knockout background. Strains lacking both LipL41 and LipL32 and LigA, LigB, and LipL32, were evaluated. The absence of proteins LipL32 and LipL41 had no effect on leptospiral virulence. On the other hand, mutants lacking LigA, LigB, and LipL32 were unable to cause acute disease. The expanded apparatus for genetic manipulation of pathogenic leptospires via the CRISPR/Cas9 system has allowed the evaluation of multiple mutations upon leptospiral virulence. This work shows that LipL32 and LipL41 are not required for acute disease and consolidates LigA and LigB proteins as virulence factors.

7.
Mol Immunol ; 134: 161-169, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33774521

RESUMEN

Ruminant γδ T cells were discovered in the mid-1980's shortly after a novel T cell receptor (TCR) gene from murine cells was described in 1984 and the murine TCRγ gene locus in 1985. It was possible to identify γδ T cell populations early in ruminants because they represent a large proportion of the peripheral blood mononuclear cells (PBMC). This null cell population, γδ T cells, was designated as such by its non-reactivity with monoclonal antibodies (mAb) against ovine and bovine CD4, CD8 and surface immunoglobulin (Ig). γδ T cells are non-conventional T cells known as innate-like cells capable of using both TCR as well as other types of receptor systems including pattern recognition receptors (PRR) and natural killer receptors (NKR). Bovine γδ T cells have been shown to respond to stimulation through toll-like receptors, NOD, and NKG2D as well as to cytokines alone, protein and non-protein antigens through their TCR, and to pathogen-infected host cells. The two main populations of γδ T cells are distinguished by the presence or absence of the hybrid co-receptor/PRR known as WC1 or T19. These two populations not only differ by their proportional representation in various tissues and organs but also by their migration into inflamed tissues. The WC1+ cells are found in the blood, skin and spleen while the WC1- γδ T cells predominate in the gut, mammary gland and uterus. In ruminants, γδ T cells may produce IFNγ, IL-17, IL-10 and TGFß, have cytotoxic activity and memory responses. The expression of particular WC1 family members controls the response to particular pathogens and correlates with differences in cytokine responses. The comparison of the WC1 gene families in cattle, sheep and goats is discussed relative to other multigenic arrays that differentiate γδ T cells by function in humans and mice.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Rumiantes/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Bovinos , Humanos , Glicoproteínas de Membrana/inmunología
8.
Front Cell Infect Microbiol ; 11: 777709, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900757

RESUMEN

Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is considered a neglected infectious disease of human and veterinary concern. Our group has been investigating proteins annotated as hypothetical, predicted to be located on the leptospiral surface. Because of their location, these proteins may have the ability to interact with various host components, which could allow establishment of the infection. These proteins act as adherence factors by binding to host receptor molecules, such as the extracellular matrix (ECM) components laminin and glycosaminoglycans to help bacterial colonization. Leptospira also interacts with the host fibrinolytic system, which has been demonstrated to be a powerful tool for invasion mechanisms. The interaction with fibrinogen and thrombin has been shown to reduce fibrin clot formation. Additionally, the degradation of coagulation cascade components by secreted proteases or by acquired surface plasmin could also play a role in reducing clot formation, hence facilitating dissemination during infection. Interaction with host complement system regulators also plays a role in helping bacteria to evade the immune system, facilitating invasion. Interaction of Leptospira to cell receptors, such as cadherins, can contribute to investigate molecules that participate in virulence. To achieve a better understanding of the host-pathogen interaction, leptospiral mutagenesis tools have been developed and explored. This work presents several proteins that mediate binding to components of the ECM, plasma, components of the complement system and cells, to gather research achievements that can be helpful in better understanding the mechanisms of leptospiral-host interactions and discuss genetic manipulation for Leptospira spp. aimed at protein function validation.


Asunto(s)
Leptospira interrogans , Leptospira , Leptospirosis , Interacciones Huésped-Patógeno , Humanos , Motivación , Unión Proteica
9.
Front Immunol ; 12: 760291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046936

RESUMEN

Human vaccination against leptospirosis has been relatively unsuccessful in clinical applications despite an expressive amount of vaccine candidates has been tested over years of research. Pathogenic Leptospira encompass a great number of serovars, most of which do not cross-react, and there has been a lack of genetic tools for many years. These obstacles have hampered the understanding of the bacteria's biology and, consequently, the identification of an effective antigen. Thus far, many approaches have been used in an attempt to find a cost-effective and broad-spectrum protective antigen(s) against the disease. In this extensive review, we discuss several strategies that have been used to develop an effective vaccine against leptospirosis, starting with Leptospira-inactivated bacterin, proteins identified in the genome sequences of pathogenic Leptospira, including reverse vaccinology, plasmid DNA, live vaccines, chimeric multi-epitope, and toll- and nod-like receptors agonists. This overview should be able to guide scientists working in the field to select potential antigens and to choose the appropriate formulation to administer the candidates.


Asunto(s)
Vacunas Bacterianas/inmunología , Leptospira/inmunología , Leptospirosis/prevención & control , Desarrollo de Vacunas , Vacunas Bacterianas/farmacología , Humanos
10.
Methods Mol Biol ; 2134: 171-185, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32632869

RESUMEN

The adhesion of pathogenic bacteria to host cells and the extracellular matrix (ECM) is considered an important step in the pathogenesis of microorganisms. It has been described that Leptospira spp. bind to multiple receptors on host cells and to the ECM to initiate infection. Most studies of Leptospira adherence described until now have focused on the in vitro attachment of recombinant L. interrogans proteins to ECM components. These putative adhesins may be involved in the colonization of the host, contributing to the bacterial invasion process. Certainly, in vitro cell adhesion studies have contributed to the elucidation of leptospiral pathogenesis mechanisms. Here, we describe a cell adhesion assay that can be used for studying the interactions between putative leptospiral adhesins and host components.


Asunto(s)
Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Adhesión Celular/fisiología , Interacciones Huésped-Patógeno/fisiología , Leptospira/patogenicidad , Leptospirosis/microbiología , Adhesinas Bacterianas/metabolismo , Matriz Extracelular/metabolismo , Humanos , Leptospira/metabolismo
11.
Front Immunol ; 11: 568694, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193344

RESUMEN

Leptospirosis is a zoonotic disease of worldwide distribution, affecting both humans and animals. The development of an effective vaccine against leptospirosis has long been pursued but without success. Humans are contaminated after direct contact with the urine of infected animals or indirectly by contaminated water or soil. The vaccines available consist of inactivated whole-bacterial cells, and the active immunoprotective antigen is the lipopolysaccharide moiety, which is also the basis for serovar classification. However, these vaccines are short-lasting, and protection is only against serovars contained in the preparation. The search for prevalent antigens, present in pathogenic species of Leptospira, represents the most cost-effective strategy for prevention of leptospirosis. Thus, the identification of these antigens is a priority. In this study, we examined the immunoprotective effect of eight leptospiral recombinant proteins using hamster as the challenge model. Animals received subcutaneously two doses of vaccine containing 50 µg of each recombinant protein adsorbed on alum adjuvant. Two weeks after the booster, animals were challenged with virulent leptospires and monitored for 21 days. All proteins were able to induce a specific immune response, although significant protective effects on survival rate were observed only for the proteins Lsa14, rLIC13259, and rLIC11711. Of these, only rLIC13259 and rLIC11711 were found to be highly prospective in promoting renal clearance. The sterilizing potential of both proteins will be further investigated to elucidate the immunoprotective mechanisms involved in leptospirosis control. These are the first proteins involved with human complement components with the capacity to protect against virulent challenge and to eliminate the bacteria from the host.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/farmacología , Leptospira/inmunología , Leptospirosis/prevención & control , Enfermedad Aguda , Adyuvantes Inmunológicos/farmacología , Compuestos de Alumbre/farmacología , Animales , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Cricetinae , Modelos Animales de Enfermedad , Masculino , Proteínas Recombinantes/farmacología
12.
Infect Immun ; 77(4): 1700-7, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19204092

RESUMEN

Paracoccidioidomycosis (PCM) is a systemic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis. Anti-PCM vaccine formulations based on the secreted fungal cell wall protein (gp43) or the derived P10 sequence containing a CD4(+) T-cell-specific epitope have shown promising results. In the present study, we evaluated new anti-PCM vaccine formulations based on the intranasal administration of P. brasiliensis gp43 or the P10 peptide in combination with the Salmonella enterica FliC flagellin, an innate immunity agonist binding specifically to the Toll-like receptor 5, in a murine model. BALB/c mice immunized with gp43 developed high-specific-serum immunoglobulin G1 responses and enhanced interleukin-4 (IL-4) and IL-10 levels. On the other hand, mice immunized with recombinant purified flagellins genetically fused with P10 at the central hypervariable domain, either flanked or not by two lysine residues, or the synthetic P10 peptide admixed with purified FliC elicited a prevailing Th1-type immune response based on lung cell-secreted type 1 cytokines. Mice immunized with gp43 and FliC and intratracheally challenged with P. brasiliensis yeast cells had increased fungal proliferation and lung tissue damage. In contrast, mice immunized with the chimeric flagellins and particularly those immunized with P10 admixed with FliC reduced P. brasiliensis growth and lung damage. Altogether, these results indicate that S. enterica FliC flagellin modulates the immune response to P. brasiliensis P10 antigen and represents a promising alternative for the generation of anti-PCM vaccines.


Asunto(s)
Antígenos Fúngicos , Flagelina , Proteínas Fúngicas , Vacunas Fúngicas , Glicoproteínas , Paracoccidioides/inmunología , Paracoccidioidomicosis/prevención & control , Péptidos , Animales , Anticuerpos Antibacterianos/sangre , Especificidad de Anticuerpos , Antígenos Fúngicos/química , Antígenos Fúngicos/genética , Antígenos Fúngicos/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Flagelina/genética , Flagelina/inmunología , Flagelina/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Vacunas Fúngicas/administración & dosificación , Vacunas Fúngicas/genética , Vacunas Fúngicas/inmunología , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/inmunología , Humanos , Inmunización , Pulmón/inmunología , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Paracoccidioides/patogenicidad , Paracoccidioidomicosis/inmunología , Paracoccidioidomicosis/microbiología , Péptidos/síntesis química , Péptidos/genética , Péptidos/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Salmonella enterica/genética , Salmonella enterica/inmunología , Salmonella enterica/metabolismo
13.
Vaccine ; 37(30): 3961-3973, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31186193

RESUMEN

Leptospirosis is a neglected infectious disease of global importance. Vaccination is the most viable strategy for the control of leptospirosis, but in spite of efforts for the development of an effective vaccine against the disease, few advances have been made, and to date, bacterin is the only option for prevention of leptospirosis. Bacterins are formulations based on inactivated leptospires that present a series of drawbacks, such as serovar-dependence and short-term immunity. Therefore, bacterins are not widely used in humans, and only Cuba, France and China have these vaccines licensed for at-risk populations. The development of recombinant DNA technology emerges as an alternative to solve the problem. Recombinant protein-based vaccines or DNA vaccines seem to be an attractive strategy, but the use of adjuvants is critical for achievement of a protective immune response. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells. In the last years, several components have been tested as adjuvants, such as aluminum salts, oil based-emulsion adjuvants, bacteria-derived components and liposomes. This review highlights the use of adjuvants in the multiple vaccine approaches that have been used for leptospirosis and their most important immunological aspects. Immune response data generated by these strategies can contribute to the understanding of the immune mechanisms involved in protection against leptospirosis, and consequently, the development of effective vaccines against this disease. This is the first review on leptospiral vaccines focusing on adjuvant aspects.


Asunto(s)
Leptospira/patogenicidad , Leptospirosis/microbiología , Leptospirosis/prevención & control , Adyuvantes Inmunológicos/uso terapéutico , Animales , Humanos , Leptospira/inmunología , Leptospirosis/inmunología , Vacunas/inmunología , Vacunas/uso terapéutico
14.
Biomed Res Int ; 2018: 1813745, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29984227

RESUMEN

Leptospirosis is a neglected tropical disease caused by pathogenic Leptospira spp. The lack of an effective vaccine favors the increase of the disease. Currently, surface-exposed proteins are the main targets for the search of vaccine candidates. In this study, we examined whether the surface Lsa46 and Lsa77 proteins, previously identified as laminin and plasminogen binding proteins, have the capacity of inducing protection and sterilizing immunity against challenge with virulent Leptospira in hamster model. Animals were subcutaneously immunized with Lsa46, Lsa77, or a combination of both in Alum adjuvant and challenged intraperitoneally with L. interrogans serovar Kennewicki strain Pomona Fromm. Hamster immunization with Lsa46 or Lsa77 or both promoted a strong IgG response. Th2- and Th1-biased immune responses were observed when Lsa46 and Lsa77 were individually administered, respectively, as detected by the IgG1/IgG2/3 ratio. Immunized hamsters with the combined proteins induced a Th1-biased immune response. Although the immunization with Lsa46 and Lsa77 stimulated protective immunity with reduction of bacterial burden, when compared to animals individually immunized with the proteins, the data was not statistically significant. Thus, although promising, more studies are needed before the role of these proteins in stimulating sterilizing immunity in mammals is conclusively determined.


Asunto(s)
Anticuerpos Antibacterianos , Proteínas Bacterianas/inmunología , Leptospira/inmunología , Leptospirosis/inmunología , Animales , Antígenos Bacterianos , Vacunas Bacterianas , Cricetinae , Conejos
15.
Virulence ; 9(1): 414-425, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29235397

RESUMEN

Leptospirosis is a widespread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. After entrance in the host, pathogenic leptospires evade the host natural defense mechanisms in order to propagate and disseminate to multiple organs. Myeloperoxidase is an enzyme stored in neutrophils azurophilic granules, and is released upon neutrophil activation to produce mainly hypochlorous acid, a strong oxidant and potent antimicrobial agent. In the present investigation, we studied the modulation of myeloperoxidase activity by L. interrogans serovar Copenhageni. We show that leptospires and their culture supernatants are able to inhibit both peroxidase and chlorination activities of myeloperoxidase, without interfering with neutrophil degranulation. By leptospiral outer membrane protein extraction and fractionation, we identified the proteins LipL21 and LipL45 as myeloperoxidase inhibitors, constituting new Leptospira virulence factors. Accordingly, we propose a function for the protein LipL21, one of the most expressed leptospiral outer membrane proteins. Our results show a novel innate immune evasion mechanism by which leptospires interfere with the host response in order to cope with the host oxidative stress and efficiently achieve dissemination and colonization.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Leptospira interrogans/inmunología , Leptospira interrogans/patogenicidad , Lipoproteínas/metabolismo , Neutrófilos/inmunología , Neutrófilos/microbiología , Peroxidasa/antagonistas & inhibidores , Factores de Virulencia/metabolismo , Antígenos Bacterianos/aislamiento & purificación , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Células Cultivadas , Humanos , Evasión Inmune , Lipoproteínas/aislamiento & purificación , Factores de Virulencia/aislamiento & purificación
16.
Int J Infect Dis ; 57: 61-69, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28161462

RESUMEN

INTRODUCTION: Pathogenic Leptospira is the causative agent of leptospirosis, a widely disseminated disease of human and veterinary concern. The development of vaccines that elicit cross-protective immunity through multiple leptospiral serovars has long been pursued. The aim of this study was to develop a novel chimeric multi-epitope fusion antigen, containing sequences of previously studied outer membrane proteins (OMPs) of Leptospira. METHODS: The chimeric protein was designed based on the amino acid sequences of the LigA, Mce, Lsa45, OmpL1, and LipL41 proteins, cloned into pAE vector, the protein expressed in Escherichia coli, and its immune response evaluated in the hamster infection model. RESULTS: The recombinant chimeric protein (rChi) was recognized by antibodies present in serum samples of confirmed cases of human leptospirosis and experimentally infected hamsters, demonstrating that the rChi protein participates in the immune response activation during infection. However, despite high antibody titers achieved when the rChi protein was administered with either Alhydrogel or Bordetella pertussis monophosphoryl lipid A (MPLA), only 50% of the hamsters were protected against infection. CONCLUSIONS: Although a complete characterization of the immune response elicited by rChi/adjuvant in hamsters is required, it is believed that the construction of chimeric genes is an important attempt towards the generation of an effective vaccine against leptospirosis.


Asunto(s)
Vacunas Bacterianas/inmunología , Leptospira interrogans/inmunología , Proteínas Recombinantes de Fusión/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/inmunología , Cricetinae , Epítopos/inmunología , Humanos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Vacunas Sintéticas/inmunología
17.
Pathog Dis ; 74(2)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26657108

RESUMEN

Leptospirosis is a zoonosis caused by pathogenic Leptospira spp. In this study, we report that the recombinant proteins LIC10507, LIC10508 and LIC10509 are recognized by confirmed leptospirosis serum samples at both phases of the disease. The recombinant rLIC10508 and rLIC10507 are plasminogen (PLG)-binding proteins, capable of generating plasmin in the presence of a PLG activator. The proteins bind to PLG in a dose-dependent and saturable manner, fulfilling host-ligand interaction. Furthermore, rLIC10508 interacts with fibrinogen (Fg), plasma fibronectin and C4b binding protein (C4BP). The binding of rLIC10508 to Fg decreases the fibrin clotting in a thrombin-catalyzed reaction. The incubation with 4 µM of protein promoted 40% inhibition upon clotting formation. C4BP bound to rLIC10508 retained its cofactor activity for factor I promoting the cleavage of C4b protein, which may reduce the membrane attack complex formation. Although these proteins have high amino acid sequence similarity, rLIC10508 is the most talented of the three, a behavior that might be explained by its unique putative 3D structure, whereas structures of rLIC10507 and rLIC10509 are very similar. Plasmin generation (rLIC10507 and rLIC10508), together with decreasing fibrin clot formation (rLIC10508) and impairment of the complement system (rLIC10508) may help the bacteria to overcome host defense, facilitating the infection process.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteína de Unión al Complemento C4b/metabolismo , Fibrinógeno/metabolismo , Fibronectinas/metabolismo , Leptospira interrogans/metabolismo , Plasminógeno/metabolismo , Proteínas Recombinantes , Proteínas de la Membrana Bacteriana Externa/química , Fibrinolisina/metabolismo , Humanos , Leptospirosis/metabolismo , Leptospirosis/microbiología , Modelos Moleculares , Sistemas de Lectura Abierta , Filogenia , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de ADN
18.
PLoS One ; 10(4): e0122762, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25849456

RESUMEN

Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively). Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG)-interacting proteins, capable of generating plasmin (PLA) and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Leptospira interrogans/genética , Animales , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/inmunología , Genoma Bacteriano , Humanos , Leptospira interrogans/inmunología , Leptospirosis/sangre , Leptospirosis/inmunología , Leptospirosis/microbiología , Ratones Endogámicos BALB C , Filogenia , Plasminógeno/química , Unión Proteica , Estructura Terciaria de Proteína
20.
Front Microbiol ; 3: 154, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22586420

RESUMEN

Paracoccidioidomycosis (PCM), a common chronic mycosis in Latin America, is a granulomatous systemic disease caused by the thermo-dimorphic fungus Paracoccidioides brasiliensis. The glycoprotein gp43 is the main antigen target of P. brasiliensis and a 15-mer internal peptide (QTLIAIHTLAIRYAN), known as P10, defines a major CD4(+)-specific T cell epitope. Previous results have indicated that, besides having a preventive role in conventional immunizations prior to challenge with the fungus, protective anti-fungal effects can be induced in P. brasiliensis-infected mice treated with P10 administered with complete Freund's adjuvant (CFA). The peptide elicits an IFN-γ-dependent Th1 immune response and is the main candidate for effective immunotherapy of patients with PCM, as an adjunctive approach to conventional chemotherapy. In the present study we tested the therapeutic effects of P10 combined with different adjuvants [aluminum hydroxide, CFA, flagellin, and the cationic lipid dioctadecyl-dimethylammonium bromide (DODAB)] in BALB/c mice previously infected with the P. brasiliensis Pb18 strain. Significant reductions in the number of colony forming units of the fungus were detected in lungs of mice immunized with P10 associated with the different adjuvants 52 days after infection. Mice treated with DODAB and P10, followed by mice treated with P10 and flagellin, showed the most prominent effects as demonstrated by the lowest numbers of viable yeast cells as well as reductions in granuloma formation and fibrosis. Concomitantly, secretion of IFN-γ and TNF-α, in contrast to interleukin (IL)-4 and IL-10, was enhanced in the lungs of mice immunized with P10 in combination with the tested adjuvants, with the best results observed in mice treated with P10 and DODAB. In conclusion, the present results demonstrate that the co-administration of the synthetic P10 peptide with several adjuvants, particularly DODAB, have significant therapeutic effects in experimental PCM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA