Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(21): 4496-4513, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37832524

RESUMEN

Plant-associated microbiota can extend plant immune system function, improve nutrient acquisition and availability, and alleviate abiotic stresses. Thus, naturally beneficial microbial therapeutics are enticing tools to improve plant productivity. The basic definition of plant microbiota across species and ecosystems, combined with the development of reductionist experimental models and the manipulation of plant phenotypes with microbes, has fueled interest in its translation to agriculture. However, the great majority of microbes exhibiting plant-productivity traits in the lab and greenhouse fail in the field. Therapeutic microbes must reach détente, the establishment of uneasy homeostasis, with the plant immune system, invade heterogeneous pre-established plant-associated communities, and persist in a new and potentially remodeled community. Environmental conditions can alter community structure and thus impact the engraftment of therapeutic microbes. We survey recent breakthroughs, challenges, and opportunities in translating beneficial microbes from the lab to the field.


Asunto(s)
Microbiota , Plantas , Agricultura , Fenotipo , Plantas/microbiología , Microbiología del Suelo , Estrés Fisiológico , Ecosistema
2.
Nature ; 587(7832): 103-108, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32999461

RESUMEN

Plants grow within a complex web of species that interact with each other and with the plant1-10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7-9,11-18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria-plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops.


Asunto(s)
Arabidopsis/microbiología , Comamonadaceae/clasificación , Comamonadaceae/fisiología , Microbiota/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Comamonadaceae/genética , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Microbiota/genética , Operón/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Rizosfera , Transducción de Señal
3.
PLoS Genet ; 19(3): e1010636, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857386

RESUMEN

Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Annu Rev Microbiol ; 74: 81-100, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32530732

RESUMEN

Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plantmicrobiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments.


Asunto(s)
Bacterias/genética , Ecología , Microbiota , Plantas/inmunología , Plantas/microbiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/inmunología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Evolución Molecular , Filogenia , Fenómenos Fisiológicos de las Plantas
5.
Pain Med ; 25(8): 514-522, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652585

RESUMEN

BACKGROUND: The different clinical presentations of fibromyalgia syndrome (FMS) might play independent roles in the unclear etiology of cognitive impairments and depressive symptoms seen in patients with FMS. Understanding how these clinical presentations are associated with the clinical and neurophysiological aspects of FMS is important for the development of effective treatments. AIM: To explore the relationship of memory complaints and depressive symptoms with the different clinical and neurophysiological characteristics of FMS. METHODS: Cross-sectional data analysis from a randomized clinical trial. Baseline demographics and data on physical fitness, sleep, anxiety, depression, cortical excitability, and pain (clinical and mechanistic) from 63 subjects with FMS were used. Multiple linear and logistic association models were constructed. RESULTS: Final regression models including different sets of predictions were statistically significant (P < .001), explaining approximately 50% of the variability in cognitive complaints and depression status. Older subjects had higher levels of anxiety, poorer sleep quality, lower motor threshold, and higher relative theta power in the central area and were more likely to have clinical depression. Higher anxiety, pain, and theta power were associated with a higher likelihood of memory complaints. CONCLUSION: Depression symptoms seem to be associated with transcranial magnetic stimulation-indexed motor threshold and psychosocial variables, whereas memory complaints are associated with pain intensity and higher theta oscillations. These mechanisms might be catalyzed or triggered by some behavioral and clinical features, such as older age, sleep disruption, and anxiety. The correlation with clinical variables suggests that the increasing of theta oscillations is a compensatory response in patients with FMS, which can be explored in future studies to improve the treatment of FMS. TRIAL REGISTRATION: ClinicalTrials.gov ID NCT03371225.


Asunto(s)
Depresión , Fibromialgia , Trastornos de la Memoria , Ritmo Teta , Humanos , Fibromialgia/fisiopatología , Fibromialgia/psicología , Femenino , Persona de Mediana Edad , Estudios Transversales , Trastornos de la Memoria/fisiopatología , Adulto , Depresión/fisiopatología , Masculino , Ritmo Teta/fisiología , Estimulación Magnética Transcraneal/métodos , Encéfalo/fisiopatología
6.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879573

RESUMEN

Plants have an innate immune system to fight off potential invaders that is based on the perception of nonself or modified-self molecules. Microbe-associated molecular patterns (MAMPs) are evolutionarily conserved microbial molecules whose extracellular detection by specific cell surface receptors initiates an array of biochemical responses collectively known as MAMP-triggered immunity (MTI). Well-characterized MAMPs include chitin, peptidoglycan, and flg22, a 22-amino acid epitope found in the major building block of the bacterial flagellum, FliC. The importance of MAMP detection by the plant immune system is underscored by the large diversity of strategies used by pathogens to interfere with MTI and that failure to do so is often associated with loss of virulence. Yet, whether or how MTI functions beyond pathogenic interactions is not well understood. Here we demonstrate that a community of root commensal bacteria modulates a specific and evolutionarily conserved sector of the Arabidopsis immune system. We identify a set of robust, taxonomically diverse MTI suppressor strains that are efficient root colonizers and, notably, can enhance the colonization capacity of other tested commensal bacteria. We highlight the importance of extracellular strategies for MTI suppression by showing that the type 2, not the type 3, secretion system is required for the immunomodulatory activity of one robust MTI suppressor. Our findings reveal that root colonization by commensals is controlled by MTI, which, in turn, can be selectively modulated by specific members of a representative bacterial root microbiota.


Asunto(s)
Microbiota/fisiología , Inmunidad de la Planta/inmunología , Raíces de Plantas/microbiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bacterias/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Inmunidad , Microbiota/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/inmunología , Plantas/microbiología , Microbiología del Suelo , Simbiosis/inmunología , Virulencia
7.
Nature ; 543(7646): 513-518, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28297714

RESUMEN

Plants live in biogeochemically diverse soils with diverse microbiota. Plant organs associate intimately with a subset of these microbes, and the structure of the microbial community can be altered by soil nutrient content. Plant-associated microbes can compete with the plant and with each other for nutrients, but may also carry traits that increase the productivity of the plant. It is unknown how the plant immune system coordinates microbial recognition with nutritional cues during microbiome assembly. Here we establish that a genetic network controlling the phosphate stress response influences the structure of the root microbiome community, even under non-stress phosphate conditions. We define a molecular mechanism regulating coordination between nutrition and defence in the presence of a synthetic bacterial community. We further demonstrate that the master transcriptional regulators of phosphate stress response in Arabidopsis thaliana also directly repress defence, consistent with plant prioritization of nutritional stress over defence. Our work will further efforts to define and deploy useful microbes to enhance plant performance.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Microbiota/fisiología , Fosfatos/metabolismo , Inmunidad de la Planta , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microbiota/inmunología , Mutación , Inmunidad de la Planta/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Neuromodulation ; 26(4): 715-727, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36435660

RESUMEN

BACKGROUND: There is tentative evidence to support the analgesic effect of transcranial direct current stimulation (tDCS) in fibromyalgia (FM), with large variability in the effect size (ES) encountered in different clinical trials. Understanding the source of the variability and exploring how it relates to the clinical results could characterize effective neuromodulation protocols and ultimately guide care in FM pain. The primary objective of this study was to determine the effect of tDCS in FM pain as compared with sham tDCS. The secondary objective was to explore the relationship of methodology, population, and intervention factors and the analgesic effect of tDCS in FM. MATERIALS AND METHODS: For the primary objective, a systematic review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Randomized clinical trials (RCTs) investigating tDCS as an intervention for FM pain were searched in MEDLINE, Embase, and the Web Of Science. Studies were excluded if they used cross-over designs or if they did not use tDCS as an intervention for pain or did not measure clinical pain. Analysis for the main outcome was performed using a random-effects model. Risk of bias and evidence certainty were assessed for all studies using Cochrane Risk of Bias and Grading of Recommendations Assessment, Development, and Evaluation tools. For the secondary objective, a meta-regression was conducted to explore methodology, population, and intervention factors potentially related to the ES. RESULTS: Sixteen RCTs were included. Six studies presented a high risk of bias. Significant reduction in pain scores were found for FM (standardized mean difference = 1.22, 95% CI = 0.80-1.65, p < 0.001). Subgroup analysis considering tDCS as a neural target revealed no differences between common neural sites. Meta-regression revealed that the duration of the tDCS protocol in weeks was the only factor associated with the ES, in which protocols that lasted four weeks or longer reported larger ES than shorter protocols. CONCLUSIONS: Results suggest an analgesic effect of tDCS in FM. tDCS protocols that last four weeks or more may be associated with larger ESs. Definite conclusions are inadequate given the large heterogeneity and limited quality of evidence of the included studies.


Asunto(s)
Fibromialgia , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Fibromialgia/terapia , Dolor , Manejo del Dolor/métodos , Analgésicos
9.
Environ Monit Assess ; 196(1): 34, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091160

RESUMEN

Sewage sludge contains plant nutrients and organic matter in its composition, making it a potential partial substitute for mineral fertilizers if it meets environmental, agronomic, and sanitary standards. The objective was to evaluate the content of nutrients and heavy metals in the sludge generated in four wastewater treatment stations (WWTPs) in Rio de Janeiro state and assess its potential value and usefulness. The samples of 19 batches from the WTTPs Alegria, Barra da Tijuca, Ilha do Governador, and Sarapuí were analyzed. The WWTPs differ in methods and processes used for treating sewage and sludge. The total contents of C, N, P, K, Ca, Mg, Fe, Al, Na, Co, Mn, As, Ba, Cd, Cr, Cu, Ni, Se, Pb, and Zn were evaluated, as well as the ratio C/N, pH, organic matter content, and electrical conductivity. The grouping of sludge samples was assessed using principal components (PCA) and cluster analysis. The economic valuation of sludge was conducted utilizing the substitute goods method, which compared the sludge's N-P-K contents with the prices of consolidated nutrient sources. All the evaluated sludge batches exhibited concentrations of heavy metals below the limits allowed by Brazilian law, along with high levels of nutrients and organic matter. Considering the chemical characteristics, all evaluated materials showed potential for agricultural use, but it is crucial to evaluate the microbiological characteristics of sludge batches before agriculture application. PCA and cluster analysis demonstrated that sludge samples from the same WWTP clustered close to each other, demonstrating higher similarity among themselves than with samples from other WWTPs. The sludge had an average added value of U$ 88.46 per megagram, considering the total contents of N, P, and K in its composition. Land application of sewage sludge can reduce the need to purchase mineral fertilizers, thereby supporting the feasibility of reusing this material in the agricultural sector.


Asunto(s)
Metales Pesados , Purificación del Agua , Aguas del Alcantarillado/análisis , Fertilizantes/análisis , Monitoreo del Ambiente , Brasil , Metales Pesados/análisis , Minerales/análisis
10.
J Exp Bot ; 73(11): 3651-3670, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35176760

RESUMEN

Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.


Asunto(s)
Agaricales , Cacao , Solanum lycopersicum , Agaricales/genética , Cacao/genética , Pared Celular , Citocininas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Azúcares , Agua
11.
PLoS Biol ; 17(11): e3000534, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31721759

RESUMEN

Phosphate starvation response (PSR) in nonmycorrhizal plants comprises transcriptional reprogramming resulting in severe physiological changes to the roots and shoots and repression of plant immunity. Thus, plant-colonizing microorganisms-the plant microbiota-are exposed to direct influence by the soil's phosphorus (P) content itself as well as to the indirect effects of soil P on the microbial niches shaped by the plant. The individual contribution of these factors to plant microbiota assembly remains unknown. To disentangle these direct and indirect effects, we planted PSR-deficient Arabidopsis mutants in a long-term managed soil P gradient and compared the composition of their shoot and root microbiota to wild-type plants across different P concentrations. PSR-deficiency had a larger effect on the composition of both bacterial and fungal plant-associated microbiota than soil P concentrations in both roots and shoots. To dissect plant-microbe interactions under variable P conditions, we conducted a microbiota reconstitution experiment. Using a 185-member bacterial synthetic community (SynCom) across a wide P concentration gradient in an agar matrix, we demonstrated a shift in the effect of bacteria on the plant from a neutral or positive interaction to a negative one, as measured by rosette size. This phenotypic shift was accompanied by changes in microbiota composition: the genus Burkholderia was specifically enriched in plant tissue under P starvation. Through a community drop-out experiment, we demonstrated that in the absence of Burkholderia from the SynCom, plant shoots accumulated higher ortophosphate (Pi) levels than shoots colonized with the full SynCom but only under Pi starvation conditions. Therefore, Pi-stressed plants are susceptible to colonization by latent opportunistic competitors found within their microbiome, thus exacerbating the plant's Pi starvation.


Asunto(s)
Arabidopsis/microbiología , Fósforo/análisis , Suelo/química , Arabidopsis/metabolismo , Burkholderia/fisiología , Microbiota , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Brotes de la Planta/metabolismo , Brotes de la Planta/microbiología , Estrés Fisiológico
12.
Br J Nutr ; : 1-18, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35416134

RESUMEN

Compromised nutritional status is associated with a poor prognosis in chronic obstructive pulmonary disease (COPD) patients. However, the impact of nutritional support in this group of patients is controversial. The present study systematically reviewed the effect of energy and or protein supplements or food fortification on anthropometry and muscle strength of COPD patients. We searched MEDLINE (PubMed), EMBASE, Cochrane Library and Scopus for all published randomised clinical trials without language restriction up to May 2021. Three reviewers performed study selection and data extraction independently. We judged the risk of bias by RoB 2 and the certainty of evidence by the GRADE approach. We included thirty-two randomised controlled trials and compiled thirty-one of them (1414 participants) in the random-effects model meta-analyses. Interventions were energy and/or protein oral nutritional supplements or food fortification added to the diet for at least one week. Pooled analysis revealed that nutritional interventions increased body weight (muscle circumference (MD) = 1·44 kg, 95 % CI 0·81, 2·08, I2 = 73 %), lean body mass (standardised mean difference (SMD) = 0·37; 95 % CI 0·15, 0·59, I2 = 46 %), midarm muscle circumference (MD = 0·29 mm2, 95 % CI 0·02, 0·57, I2 = 0 %), triceps skinfold (MD = 1·09 mm, 95 % CI 0·01, 2·16, I2 = 0 %) and handgrip strength (SMD = 0·39, 95 % CI 0·07, 0·71, I2 = 62 %) compared with control diets. Certainty of evidence ranged from very low to low, and most studies were judged with some concerns or at high risk of bias. This meta-analysis revealed, with limited evidence, that increased protein and/or energy intake positively impacts anthropometric measures and handgrip strength of COPD patients.

13.
Pain Med ; 23(3): 558-570, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-34633449

RESUMEN

Conditioned pain modulation (CPM) can discriminate between healthy and chronic pain patients. However, its relationship with neurophysiological pain mechanisms is poorly understood. Brain oscillations measured by electroencephalography (EEG) might help gain insight into this complex relationship. OBJECTIVE: To investigate the relationship between CPM response and self-reported pain intensity in non-specific chronic low back pain (NSCLBP) and explore respective EEG signatures associated to these mechanisms. DESIGN: Cross-sectional analysis. PARTICIPANTS: Thirty NSCLBP patients participated. METHODS: Self-reported low back pain, questionnaires, mood scales, CPM (static and dynamic quantitative sensory tests), and resting surface EEG data were collected and analyzed. Linear regression models were used for statistical analysis. RESULTS: CPM was not significantly correlated with self-reported pain intensity scores. Relative power of EEG in the beta and high beta bands as recorded from the frontal, central, and parietal cortical areas were significantly associated with CPM. EEG relative power at delta and theta bands as recorded from the central area were significantly correlated with self-reported pain intensity scores while controlling for self-reported depression. CONCLUSIONS: Faster EEG frequencies recorded from pain perception areas may provide a signature of a potential cortical compensation caused by chronic pain states. Slower EEG frequencies may have a critical role in abnormal pain processing.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Estudios Transversales , Electroencefalografía , Humanos , Dolor de la Región Lumbar/diagnóstico , Percepción del Dolor/fisiología , Umbral del Dolor/fisiología
14.
New Phytol ; 231(1): 365-381, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33826751

RESUMEN

Moniliophthora perniciosa causes witches' broom disease of cacao and inflicts symptoms suggestive of hormonal imbalance. We investigated whether infection of the tomato (Solanum lycopersicum) model system Micro-Tom (MT) by the Solanaceae (S)-biotype of Moniliophthora perniciosa, which causes stem swelling and hypertrophic growth of axillary shoots, results from changes in host cytokinin metabolism. Inoculation of an MT-transgenic line that overexpresses the Arabidopsis CYTOKININ OXIDASE-2 gene (35S::AtCKX2) resulted in a reduction in disease incidence and stem diameter. RNA-sequencing analysis of infected MT and 35S::AtCKX2 revealed the activation of cytokinin-responsive marker genes when symptoms were conspicuous. The expression of an Moniliophthora perniciosa tRNA-ISOPENTENYL-TRANSFERASE suggests the production of isopentenyladenine (iP), detected in mycelia grown in vitro. Inoculated MT stems showed higher levels of dihydrozeatin and trans-zeatin but not iP. The application of benzyladenine induced symptoms similar to infection, whereas applying the cytokinin receptor inhibitors LGR-991 and PI55 decreased symptoms. Moniliophthora perniciosa produces iP that might contribute to cytokinin synthesis by the host, which results in vascular and cortex enlargement, axillary shoot outgrowth, reduction in root biomass and an increase in fruit locule number. This strategy may be associated with the manipulation of sink establishment to favour infection by the fungus.


Asunto(s)
Agaricales , Cacao , Solanum lycopersicum , Citocininas , Solanum lycopersicum/genética , Enfermedad por Fitoplasma , Enfermedades de las Plantas
15.
PLoS Biol ; 16(2): e2003962, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29462153

RESUMEN

Specific members of complex microbiota can influence host phenotypes, depending on both the abiotic environment and the presence of other microorganisms. Therefore, it is challenging to define bacterial combinations that have predictable host phenotypic outputs. We demonstrate that plant-bacterium binary-association assays inform the design of small synthetic communities with predictable phenotypes in the host. Specifically, we constructed synthetic communities that modified phosphate accumulation in the shoot and induced phosphate starvation-responsive genes in a predictable fashion. We found that bacterial colonization of the plant is not a predictor of the plant phenotypes we analyzed. Finally, we demonstrated that characterizing a subset of all possible bacterial synthetic communities is sufficient to predict the outcome of untested bacterial consortia. Our results demonstrate that it is possible to infer causal relationships between microbiota membership and host phenotypes and to use these inferences to rationally design novel communities.


Asunto(s)
Bacterias/aislamiento & purificación , Brassicaceae/microbiología , Interacciones Microbiota-Huesped , Consorcios Microbianos , Bacterias/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Genes Bacterianos , Genes de Plantas , Fosfatos/metabolismo , Raíces de Plantas/microbiología , Brotes de la Planta/metabolismo , ARN Ribosómico 16S/genética , Simbiosis
16.
Proc Natl Acad Sci U S A ; 115(6): 1262-1267, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29358378

RESUMEN

Bio-based production of fatty acids and fatty acid-derived products can enable sustainable substitution of petroleum-derived fuels and chemicals. However, developing new microbial cell factories for producing high levels of fatty acids requires extensive engineering of lipid metabolism, a complex and tightly regulated metabolic network. Here we generated a Saccharomyces cerevisiae platform strain with a simplified lipid metabolism network with high-level production of free fatty acids (FFAs) due to redirected fatty acid metabolism and reduced feedback regulation. Deletion of the main fatty acid activation genes (the first step in ß-oxidation), main storage lipid formation genes, and phosphatidate phosphatase genes resulted in a constrained lipid metabolic network in which fatty acid flux was directed to a large extent toward phospholipids. This resulted in simultaneous increases of phospholipids by up to 2.8-fold and of FFAs by up to 40-fold compared with wild-type levels. Further deletion of phospholipase genes PLB1 and PLB2 resulted in a 46% decrease in FFA levels and 105% increase in phospholipid levels, suggesting that phospholipid hydrolysis plays an important role in FFA production when phospholipid levels are increased. The multiple deletion mutant generated allowed for a study of fatty acid dynamics in lipid metabolism and represents a platform strain with interesting properties that provide insight into the future development of lipid-related cell factories.


Asunto(s)
Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Saccharomyces cerevisiae/metabolismo , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Metabolismo de los Lípidos/genética , Lisofosfolipasa/genética , Lisofosfolipasa/metabolismo , Lípidos de la Membrana/biosíntesis , Lípidos de la Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Relig Health ; 59(4): 1843-1854, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30465263

RESUMEN

Patients were separated into two groups: (1) non-waiting list (NWL) and (2) waiting list (WL) for the lung transplantation. We found greater levels of the faith and spirituality, in those awaiting transplantation. In the NWL group, higher 'meaning' was associated with higher 'vitality,' 'emotional well-being,' and 'mental health'; higher 'peace' was associated with higher 'mental health.' In the WL group, higher 'peace' was associated with and better 'mental health' and 'emotional well-being.' Regardless of whether patients are lung transplantation candidates or not, spirituality/religiosity may help those with lung diseases cope better with their disease and have better quality of life.


Asunto(s)
Enfermedades Pulmonares , Calidad de Vida , Religión , Espiritualidad , Humanos , Enfermedades Pulmonares/psicología , Salud Mental/estadística & datos numéricos , Calidad de Vida/psicología
18.
Microb Cell Fact ; 18(1): 205, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31767000

RESUMEN

BACKGROUND: The sesquiterpenoid abscisic acid (ABA) is mostly known for regulating developmental processes and abiotic stress responses in higher plants. Recent studies show that ABA also exhibits a variety of pharmacological activities. Affordable and sustainable production will be required to utilize the compound in agriculture and as a potential pharmaceutical. Saccharomyces cerevisiae is an established workhorse for the biotechnological production of chemicals. In this study, we constructed and characterised an ABA-producing S. cerevisiae strain using the ABA biosynthetic pathway from Botrytis cinerea. RESULTS: Expression of the B. cinerea genes bcaba1, bcaba2, bcaba3 and bcaba4 was sufficient to establish ABA production in the heterologous host. We characterised the ABA-producing strain further by monitoring ABA production over time and, since the pathway contains two cytochrome P450 enzymes, by investigating the effects of overexpressing the native S. cerevisiae or the B. cinerea cytochrome P450 reductase. Both, overexpression of the native or heterologous cytochrome P450 reductase, led to increased ABA titres. We were able to show that ABA production was not affected by precursor or NADPH supply, which suggested that the heterologous enzymes were limiting the flux towards the product. The B. cinerea cytochrome P450 monooxygenases BcABA1 and BcABA2 were identified as pathway bottlenecks and balancing the expression levels of the pathway enzymes resulted in 4.1-fold increased ABA titres while reducing by-product formation. CONCLUSION: This work represents the first step towards a heterologous ABA cell factory for the commercially relevant sesquiterpenoid.


Asunto(s)
Ácido Abscísico , Vías Biosintéticas/genética , Botrytis/genética , Reguladores del Crecimiento de las Plantas/biosíntesis , Saccharomyces cerevisiae/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Genes Fúngicos , Ingeniería Metabólica/métodos , Reguladores del Crecimiento de las Plantas/genética , Saccharomyces cerevisiae/metabolismo , Transgenes
19.
Anal Bioanal Chem ; 411(3): 659-667, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30515537

RESUMEN

There are increasing concerns regarding the risks arising from the contamination of manipulators of antineoplastic drugs promoted by occupational exposure or even in the dosage of drugs. The present work proposes the use of an electrochemical sensor based on a biopolymer extracted from the babassu coconut (Orbignya phalerata) for the determination of an antineoplastic 5-fluorouracil (5-FU) drug as an alternative for the monitoring of these drugs. In order to reduce the cost of this sensor, a flexible gold electrode (FEAu) is proposed. The surface modification of FEAu was performed with the deposition of a casting film of the biopolymer extracted from the babassu mesocarp (BM) and modified with phthalic anhydride (BMPA). The electrochemical activity of the modified electrode was characterized by cyclic voltammetry (CV), and its morphology was observed by atomic force microscopy (AFM). The FEAu/BMPA showed a high sensitivity (8.8 µA/µmol/L) and low limit of detection (0.34 µmol/L) for the 5-FU drug in an acid medium. Electrochemical sensors developed from the babassu mesocarp may be a viable alternative for the monitoring of the 5-FU antineoplastic in pharmaceutical formulations, because in addition to being sensitive to this drug, they are constructed of a natural polymer, renewable, and abundant in nature. Graphical abstract ᅟ.


Asunto(s)
Antimetabolitos Antineoplásicos/análisis , Cocos/química , Técnicas Electroquímicas/instrumentación , Electrodos , Fluorouracilo/análisis , Oro/química , Costos y Análisis de Costo , Monitoreo de Drogas/instrumentación , Electrodos/economía , Límite de Detección , Microscopía de Fuerza Atómica , Oxidación-Reducción , Anhídridos Ftálicos/química , Solubilidad
20.
J Biol Chem ; 292(50): 20558-20569, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29042440

RESUMEN

Moniliophthora perniciosa is the causative agent of witches' broom disease, which devastates cacao cultures in South America. This pathogenic fungus infects meristematic tissues and derives nutrients from the plant apoplast during an unusually long-lasting biotrophic stage. To survive, the fungus produces proteins to suppress the plant immune response. Proteins of the PR-1 (pathogenesis-related 1)/CAP superfamily have been implicated in fungal virulence and immune suppression. The genome of M. perniciosa encodes 11 homologues of plant PR-1 proteins, designated MpPR-1 proteins, but their precise mode of action is poorly understood. In this study, we expressed MpPR-1 proteins in a yeast model lacking endogenous CAP proteins. We show that some members of the MpPR-1 family bind and promote secretion of sterols, whereas others bind and promote secretion of fatty acids. Lipid binding by purified MpPR-1 occurs with micromolar affinity and is saturable in vitro Sterol binding by MpPR-1 requires the presence of a flexible loop region containing aromatic amino acids, the caveolin-binding motif. Remarkably, MpPR-1 family members that do not bind sterols can be converted to sterol binders by a single point mutation in the caveolin-binding motif. We discuss the possible implications of the lipid-binding activity of MpPR-1 family members with regard to the mode of action of these proteins during M. perniciosa infections.


Asunto(s)
Agaricales/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Proteínas Fúngicas/metabolismo , Esteroles/metabolismo , Agaricales/química , Agaricales/patogenicidad , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Unión Competitiva , Cacao/microbiología , Colesterol/química , Colesterol/metabolismo , Ácidos Grasos no Esterificados/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Eliminación de Gen , Cinética , Ligandos , Mutagénesis Sitio-Dirigida , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Mutación Puntual , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Esteroles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA