Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Org Electron ; 12(3): 497-503, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23794963

RESUMEN

Water soluble poly(1-vinyl-1,2,4-triazole) (PVT) as a novel dielectric layer for organic field effect transistor is studied. Dielectric spectroscopy characterization reveals it has low leakage current and rather high breakdown voltage. Both n-channel and p-channel organic field effect transistors are fabricated using pentacene and fullerene as active layers. Both devices show device performances with lack of hysteresis, very low threshold voltages and high on/off ratios. Excellent film formation property is utilized to make AlO x and thin PVT bilayer in order to decrease the operating voltage of the devices. All solution processed ambipolar device is fabricated with simple spin coating steps using poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene) (MEH-PPV) end capped with polyhedral oligomeric silsesquioxanes (POSS) as active layer. Our investigations show that PVT can be a very promising dielectric for organic field effect transistors.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119424, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33461130

RESUMEN

In the present study novel 4-(4-ethyl-phenyl)-3-(4-methyl-phenyl)-1,2,4-oxadiazol-5(4H)-one (compound (4)) and 4-(4-ethyl-phenyl)-3-(4-methyl-phenyl)-1,2,4-oxadiazole-5(4H)-thione (compound (5)) were synthesized. These oxadiazole ring derivatives were characterized by IR, 1H NMR, 13C NMR and HRMS analyses. The solvent effects on CO, CN and CS stretching vibrational frequencies (ν(CO), ν(CN) and ν(CS)) of synthesized compounds were investigated experimentally using attenuated total reflection (ATR) infrared spectroscopy and compared with the theoretical results assigned using the potential energy distribution (PED) contributions. Furthermore, the ν(CO), ν(CN) and ν(CS) of compound (4) and compound (5) were correlated with empirical solvent parameters such as the solvent acceptor numbers, the Swain equation, the Kirkwood-Bauer-Magat equation, and the linear solvation energy relationships. Apart from the linear effects investigated in similar studies, solvent-induced vibrational shifts were investigated using the quadratic equation. The prediction capabilities of empirical solvent parameters were statistically compared. It was found that the linear solvation energy relationships show better correlation than the other empirical solvent parameters. Additionally, the quadratic equation provided more accurate predictions for the vibrational frequency locations than the Swain and the linear solvation energy relationships equations.

3.
Eng Life Sci ; 20(1-2): 36-49, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32625045

RESUMEN

The characterization of the hydrogel was performed using Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Purified Bacillus pumilus Y7-derived alkaline protease was immobilized in Poly (vinylimidazole)/clay (PVI/SEP) hydrogel with 95% yield of immobilization. Immobilization decreased the pH optimum from 9 to 6 for free and immobilized enzyme, respectively. Temperature optimum 3°C decreased for immobilized enzyme. The K m, V m, and k cat of immobilized enzyme were 4.4, 1.7, and 7.5-fold increased over its free counterpart. Immobilized protease retained about 65% residual activity for 16th reuse. The immobilized protease endured its 35% residual activity in the material after six cycle's batch applications. The results of thermodynamic analysis for casein hydrolysis showed that the ΔG≠ (activation free energy) and ΔG≠ E-T (activation free energy of transition state formation) obtained for the immobilized enzyme decreased in comparison to those obtained for the free enzyme. On the other hand, the value of ΔG≠ ES (free energy of substrate binding) was observed to have increased. These results indicate an increase in the spontaneity of the biochemical reaction post immobilization. Enthalpy value of immobilized enzyme that was 2.2-fold increased over the free enzyme indicated lower energy for the formation of the transition state, and increased ΔS≠ value implied that the immobilized form of the enzyme was more ordered than its free form.

4.
J Colloid Interface Sci ; 296(2): 472-9, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16298380

RESUMEN

The adsorption of polyvinylimidazole (PVI) onto kaolinite from aqueous solutions has been investigated systematically as a function of parameters such as calcination temperature of kaolinite, pH, ionic strength, and temperature. According to the experimental results, the adsorption of PVI increases with pH from 8.50 to 11.50, temperature from 25 to 55 degrees C, and ionic strength from 0 to 0.1 mol L(-1). The kaolinite sample calcined at 600 degrees C has a maximum adsorption capacity. Adsorption isotherms of PVI onto kaolinite have been determined and correlated with common isotherm equations such as Langmuir and Freundlich isotherm models. The Langmuir isotherm model appeared to fit the isotherm data better than the Freundlich isotherm model. The physical properties of this adsorbent are consistent with the parameters obtained from the isotherm equations. Furthermore, the zeta potentials of kaolinite suspensions have been measured in aqueous solutions of different PVI concentrations and pH. From the experimental results, (i) pH strongly alters the zeta potential of kaolinite; (ii) kaolinite has an isoelectric point at about pH 2.35 in water and about pH 8.75 in 249.9 ppm PVI concentration; (iii) PVI changes the interface charge from negative to positive for kaolinite. The study of temperature effect has been quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy changes. The dimensionless separation factor (RL) has shown that kaolinite can be used for adsorption of PVI from aqueous solutions.

5.
J Hazard Mater ; 134(1-3): 211-9, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16343759

RESUMEN

The adsorption of PAM onto sepiolite from aqueous solutions has been investigated systematically as a function of some parameters such as calcination temperature of sepiolite, pH, ionic strength and temperature. The adsorption of cationic polyacrylamide (PAM) increases with pH from 5.50 to 11.00, temperature from 25 to 55 degrees C and ionic strength from 0 to 0.1molL(-1). The sepiolite sample calcined at 200 degrees C has a higher adsorption capacity than the other calcined samples. Adsorption isotherms of PAM onto sepiolite have been determined and correlated with common isotherm equations such as Langmuir and Freundlich isotherm models. The Langmuir isotherm model appeared to fit the isotherm data better than the Freundlich isotherm model. The physical properties of this adsorbent are consistent with the parameters obtained from the isotherm equations. The zeta potentials of sepiolite suspensions have been measured in aqueous solutions of NaCl and different PAM concentrations and pH. From the experimental results: (i) pH strongly alters the zeta potential of sepiolite, (ii) sepiolite has an isoelectric point at about pH 6.6 in water and about pH 8 in 250mgL(-1) PAM concentration, (iii) PAM changes the interface charge from negative to positive for sepiolite. Effect of temperature on adsorption has been quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy. The dimensionless separation factor (R(L)) has shown that sepiolite can be used for adsorption of PAM from aqueous solutions.


Asunto(s)
Resinas Acrílicas/química , Silicatos de Magnesio/química , Adsorción , Cationes/química , Fenómenos Químicos , Química Física , Concentración de Iones de Hidrógeno , Estructura Molecular , Concentración Osmolar , Temperatura , Difracción de Rayos X
6.
J Hazard Mater ; 286: 612-23, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25666882

RESUMEN

Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate(EG)-vinylphenyl boronic acid(VPBA)) [m-poly(EG-VPBA)], produced by suspension polymerization and characterized, was found to be an efficient solid polymer for Cr(VI) adsorption. The m-poly(EG-VPBA) microparticles were prepared by copolymerizing of ethylene glycol dimethylacrylate (EG) with 4-vinyl phenyl boronic acid (VPBA). The m-poly(EG-VPBA) microparticles were characterized by N2 adsorption/desorption isotherms, electron spin resonance (ESR), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), elemental analysis, scanning electron microscope (SEM) and swelling studies. The m-poly(EG-VPBA) microparticles were used at adsorbent/Cr(VI) ion ratios. The influence of pH, Cr(VI) initial concentration, temperature of the removal process was investigated. The maximum removal of Cr(VI) was observed at pH 2. Langmuir isotherm and Dubinin-Radushkvich isotherm were found to better fit the experiment data rather than Fruendlich isotherm. The kinetics of the adsorption process of Cr(VI) on the m-poly(EG-VPBA) microparticles were investigated using the pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models, results showed that the pseudo-second order equation model provided the best correlation with the experimental results. The thermodynamic parameters (free energy change, ΔG(0) enthalpy change, ΔH(0); and entropy change, ΔS(0)) for the adsorption have been evaluated.


Asunto(s)
Ácidos Borónicos/química , Cromo/química , Metacrilatos/química , Polietilenglicoles/química , Compuestos de Vinilo/química , Contaminantes Químicos del Agua/química , Adsorción , Cinética , Fenómenos Magnéticos , Termodinámica , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
7.
Artículo en Inglés | MEDLINE | ID: mdl-22986052

RESUMEN

The effects of 15 solvents on the C=O stretching vibrational frequency of flurbiprofen (FBF) were determined to investigate solvent-solute interactions. Solvent effects on the geometry and C=O stretching vibrational frequency, ν(C=O), of FBF were studied theoretically at the DFT/B3LYP and HF level in combination with the polarizable continuum model and experimentally using attenuated total reflection infrared spectroscopy (ATR-IR). The calculated C=O stretching frequencies in the liquid phase are in agreement with experimental values. Moreover, the wavenumbers of ν(C=O) of FBF in different solvents have been obtained and correlated with the Kirkwood-Bauer-Magat equation (KBM), the solvent acceptor numbers (ANs), and the linear solvation energy relationships (LSERs). The solvent-induced stretching vibrational frequency shifts displayed a better correlation with the LSERs than with the ANs and KBM.


Asunto(s)
Analgésicos/química , Flurbiprofeno/química , Carbono/química , Modelos Moleculares , Oxígeno/química , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA