Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(11): 2103-2117.e10, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36323311

RESUMEN

The surface of the central nervous system (CNS) is protected by the meninges, which contain a dense network of meningeal macrophages (MMs). Here, we examined the role of tissue-resident MM in viral infection. MHC-II- MM were abundant neonatally, whereas MHC-II+ MM appeared over time. These barrier macrophages differentially responded to in vivo peripheral challenges such as LPS, SARS-CoV-2, and lymphocytic choriomeningitis virus (LCMV). Peripheral LCMV infection, which was asymptomatic, led to a transient infection and activation of the meninges. Mice lacking macrophages but conserving brain microglia, or mice bearing macrophage-specific deletion of Stat1 or Ifnar, exhibited extensive viral spread into the CNS. Transcranial pharmacological depletion strategies targeting MM locally resulted in several areas of the meninges becoming infected and fatal meningitis. Low numbers of MHC-II+ MM, which is seen upon LPS challenge or in neonates, corelated with higher viral load upon infection. Thus, MMs protect against viral infection and may present targets for therapeutic manipulation.


Asunto(s)
COVID-19 , Coriomeningitis Linfocítica , Animales , Ratones , Lipopolisacáridos , Ratones Endogámicos C57BL , SARS-CoV-2 , Virus de la Coriomeningitis Linfocítica/fisiología , Macrófagos , Meninges
2.
Mol Syst Biol ; 20(7): 744-766, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811801

RESUMEN

The advent of high-throughput single-cell genomics technologies has fundamentally transformed biological sciences. Currently, millions of cells from complex biological tissues can be phenotypically profiled across multiple modalities. The scaling of computational methods to analyze and visualize such data is a constant challenge, and tools need to be regularly updated, if not redesigned, to cope with ever-growing numbers of cells. Over the last few years, metacells have been introduced to reduce the size and complexity of single-cell genomics data while preserving biologically relevant information and improving interpretability. Here, we review recent studies that capitalize on the concept of metacells-and the many variants in nomenclature that have been used. We further outline how and when metacells should (or should not) be used to analyze single-cell genomics data and what should be considered when analyzing such data at the metacell level. To facilitate the exploration of metacells, we provide a comprehensive tutorial on the construction and analysis of metacells from single-cell RNA-seq data ( https://github.com/GfellerLab/MetacellAnalysisTutorial ) as well as a fully integrated pipeline to rapidly build, visualize and evaluate metacells with different methods ( https://github.com/GfellerLab/MetacellAnalysisToolkit ).


Asunto(s)
Genómica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Genómica/métodos , Humanos , Biología Computacional/métodos , Programas Informáticos , Animales
3.
Sci Rep ; 12(1): 8804, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614095

RESUMEN

A system of lymphatic vessels has been recently characterized in the meninges, with a postulated role in 'cleaning' the brain via cerebral fluid drainage. As meninges are the origin site of migraine pain, we hypothesized that malfunctioning of the lymphatic system should affect the local trigeminal nociception. To test this hypothesis, we studied nociceptive and inflammatory mechanisms in the hemiskull preparations (containing the meninges) of K14-VEGFR3-Ig (K14) mice lacking the meningeal lymphatic system. We recorded the spiking activity of meningeal afferents and estimated the local mast cells population, calcitonin gene-related peptide (CGRP) and cytokine levels as well as the dural trigeminal innervation in freshly-isolated hemiskull preparations from K14-VEGFR3-Ig (K14) or wild type C57BL/6 mice (WT). Spiking activity data have been confirmed in an acquired model of meningeal lymphatic dysfunction (AAV-mVEGFR3(1-4)Ig induced lymphatic ablation). We found that levels of the pro-inflammatory cytokine IL12-p70 and CGRP, implicated in migraine, were reduced in the meninges of K14 mice, while the levels of the mast cell activator MCP-1 were increased. The other migraine-related pro-inflammatory cytokines (basal and stimulated), did not differ between the two genotypes. The patterns of trigeminal innervation in meninges remained unchanged and we did not observe alterations in basal or ATP-induced nociceptive firing in the meningeal afferents associated with meningeal lymphatic dysfunction. In summary, the lack of meningeal lymphatic system is associated with a new balance between pro- and anti-migraine mediators but does not directly trigger meningeal nociceptive state.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Animales , Citocinas , Inflamación , Sistema Linfático , Meninges , Ratones , Ratones Endogámicos C57BL , Nocicepción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA