Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Dev Biol ; 330(1): 21-31, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19272372

RESUMEN

Somites are embryonic precursors of the ribs, vertebrae and certain dermis tissue. Somite formation is a periodic process regulated by a molecular clock which drives cyclic expression of a number of clock genes in the presomitic mesoderm. To date the mechanism regulating the period of clock gene oscillations is unknown. Here we show that chick homologues of the Wnt pathway genes that oscillate in mouse do not cycle across the chick presomitic mesoderm. Strikingly we find that modifying Wnt signalling changes the period of Notch driven oscillations in both mouse and chick but these oscillations continue. We propose that the Wnt pathway is a conserved mechanism that is involved in regulating the period of cyclic gene oscillations in the presomitic mesoderm.


Asunto(s)
Relojes Biológicos , Tipificación del Cuerpo/fisiología , Proteínas Wnt/metabolismo , Animales , Embrión de Pollo , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Ratones , Receptores Notch/metabolismo , Transducción de Señal , Somitos/metabolismo , Proteínas Wnt/genética
2.
BMC Dev Biol ; 10: 24, 2010 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-20184730

RESUMEN

BACKGROUND: Somitogenesis is the earliest sign of segmentation in the developing vertebrate embryo. This process starts very early, soon after gastrulation has initiated and proceeds in an anterior-to-posterior direction during body axis elongation. It is widely accepted that somitogenesis is controlled by a molecular oscillator with the same periodicity as somite formation. This periodic mechanism is repeated a specific number of times until the embryo acquires a defined specie-specific final number of somites at the end of the process of axis elongation. This final number of somites varies widely between vertebrate species. How termination of the process of somitogenesis is determined is still unknown. RESULTS: Here we show that during development there is an imbalance between the speed of somite formation and growth of the presomitic mesoderm (PSM)/tail bud. This decrease in the PSM size of the chick embryo is not due to an acceleration of the speed of somite formation because it remains constant until the last stages of somitogenesis, when it slows down. When the chick embryo reaches its final number of somites at stage HH 24-25 there is still some remaining unsegmented PSM in which expression of components of the somitogenesis oscillator is no longer dynamic. Finally, we identify a change in expression of retinoic acid regulating factors in the tail bud at late stages of somitogenesis, such that in the chick embryo there is a pronounced onset of Raldh2 expression while in the mouse embryo the expression of the RA inhibitor Cyp26A1 is downregulated. CONCLUSIONS: Our results show that the chick somitogenesis oscillator is arrested before all paraxial mesoderm is segmented into somites. In addition, endogenous retinoic acid is probably also involved in the termination of the process of segmentation, and in tail growth in general.


Asunto(s)
Embrión de Pollo , Mesodermo/metabolismo , Somitos/embriología , Animales , Ratones , Retinal-Deshidrogenasa/metabolismo , Cola (estructura animal)/embriología , Tretinoina/metabolismo
3.
Mol Cell Biol ; 25(23): 10433-41, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16287856

RESUMEN

Notch signal transduction centers on a conserved DNA-binding protein called Suppressor of Hairless [Su(H)] in Drosophila species. In the absence of Notch activation, target genes are repressed by Su(H) acting in conjunction with a partner, Hairless, which contains binding motifs for two global corepressors, CtBP and Groucho (Gro). Usually these corepressors are thought to act via different mechanisms; complexed with other transcriptional regulators, they function independently and/or redundantly. Here we have investigated the requirement for Gro and CtBP in Hairless-mediated repression. Unexpectedly, we find that mutations inactivating one or the other binding motif can have detrimental effects on Hairless similar to those of mutations that inactivate both motifs. These results argue that recruitment of one or the other corepressor is not sufficient to confer repression in the context of the Hairless-Su(H) complex; Gro and CtBP need to function in combination. In addition, we demonstrate that Hairless has a second mode of repression that antagonizes Notch intracellular domain and is independent of Gro or CtBP binding.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Silenciador del Gen , Fosfoproteínas/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Oxidorreductasas de Alcohol , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mutación/genética , Fosfoproteínas/genética , Unión Proteica , Receptores Notch/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Alas de Animales/anomalías , Alas de Animales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA