Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sensors (Basel) ; 17(6)2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28574466

RESUMEN

Infrared imaging technology, used both to study deep-space bodies' radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm2 chip integrated in a standard 0.18-µm 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping,analogcalibration,nordigitalcompensationtechnique. Whencoupledtoa2048×2048 IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW.

2.
Micromachines (Basel) ; 14(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37512682

RESUMEN

In the field of embedded systems, energy efficiency is a critical requirement, particularly for battery-powered devices. RISC-V processors have gained popularity due to their flexibility and open-source nature, making them an attractive choice for embedded applications. However, not all RISC-V processors are equally energy-efficient, and evaluating their performance in specific use cases is essential. This paper presents RisCO2, an RISC-V implementation optimized for energy efficiency. It evaluates its performance compared to other RISC-V processors in terms of resource utilization and energy consumption in a signal processing application for nondispersive infrared (NDIR) CO2 sensors.The processors were implemented in the PULPino SoC and synthesized using Vivado IDE. RisCO2 is based on the RV32E_Zfinx instruction set and was designed from scratch by the authors specifically for low-power signal demodulation in CO2 NDIR sensors. The other processors are Ri5cy, Micro-riscy, and Zero-riscy, developed by the PULP team, and CV32E40P (derived from Ri5cy) from the OpenHW Group, all of them widely used in the RISC-V community. Our experiments showed that RisCO2 had the lowest energy consumption among the five processors, with a 53.5% reduction in energy consumption compared to CV32E40P and a 94.8% reduction compared to Micro-riscy. Additionally, RisCO2 had the lowest FPGA resource utilization compared to the best-performing processors, CV32E40P and Ri5cy, with a 46.1% and a 59% reduction in LUTs, respectively. Our findings suggest that RisCO2 is a highly energy-efficient RISC-V processor for NDIR CO2 sensors that require signal demodulation to enhance the accuracy of the measurements. The results also highlight the importance of evaluating processors in specific use cases to identify the most energy-efficient option. This paper provides valuable insights for designers of energy-efficient embedded systems using RISC-V processors.

3.
Biosens Bioelectron ; 234: 115342, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37141829

RESUMEN

The early detection of very low bacterial concentrations is key to minimize the healthcare and safety issues associated with microbial infections, food poisoning or water pollution. In amperometric integrated circuits for electrochemical sensors, flicker noise is still the main bottleneck to achieve ultrasensitive detection with small footprint, cost-effective and ultra-low power instrumentation. Current strategies rely on autozeroing or chopper stabilization causing negative impacts on chip size and power consumption. This work presents a 27-µW potentiostatic-amperometric Delta-Sigma modulator able to cancel its own flicker noise and provide a 4-fold improvement in the limit of detection. The 2.3-mm2 all-in-one CMOS integrated circuit is glued to an inkjet-printed electrochemical sensor. Measurements show that the limit of detection is 15 pArms, the extended dynamic range reaches 110 dB and linearity is R2 = 0.998. The disposable device is able to detect, in less than 1h, live bacterial concentrations as low as 102 CFU/mL from a 50-µL droplet sample, which is equivalent to 5 microorganisms.


Asunto(s)
Bacterias , Técnicas Biosensibles , Técnicas Biosensibles/instrumentación , Bacterias/aislamiento & purificación
4.
IEEE Trans Biomed Circuits Syst ; 15(5): 860-876, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34543202

RESUMEN

This paper presents a 1024-channel neural read-out integrated circuit (ROIC) for solution-gated GFET sensing probes in massive µECoG brain mapping. The proposed time-domain multiplexing of GFET-only arrays enables low-cost and scalable hybrid headstages. Low-power CMOS circuits are presented for the GFET analog frontend, including a CDS mechanism to improve preamplifier noise figures and 10-bit 10-kS/s A/D conversion. The 1024-channel ROIC has been fabricated in a standard 1.8-V 0.18- µm CMOS technology with 0.012 mm 2 and 36 µ W per channel. An automated methodology for the in-situ calibration of each GFET sensor is also proposed. Experimental ROIC tests are reported using a custom FPGA-based µECoG headstage with 16×32 and 32×32 GFET probes in saline solution and agar substrate. Compared to state-of-art neural ROICs, this work achieves the largest scalability in hybrid platforms and it allows the recording of infra-slow neural signals.


Asunto(s)
Mapeo Encefálico , Calibración
5.
Biosens Bioelectron ; 136: 38-46, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31030059

RESUMEN

At the point of care (POC), on-side clinical testing allows fast biomarkers determination even in resource-limited environments. Current POC systems rely on tests selective to a single analyte or complex multiplexed systems with important portability and performance limitations. Hence, there is a need for handheld POC devices enabling the detection of multiple analytes with accuracy and simplicity. Here we present a reconfigurable smartphone-interfaced electrochemical Lab-on-a-Chip (LoC) with two working electrodes for dual analyte determination enabling biomarkers' selection in situ and on-demand. Biomarkers selection was achieved by the use of electrodepositable alginate hydrogels. Alginate membranes containing either glucose oxidase (GOx) or lactate oxidase (LOx) were selectively electrodeposited on the surface of each working electrode in around 4 min, completing sample measurement in less than 1 min. Glucose and lactate determination was performed simultaneously and without cross-talk in buffer, fetal bovine serum (FBS) and whole blood samples, the latter being possible by the size-exclusion filtration capacity of the hydrogels. At optimal conditions, glucose and lactate were determined in a wide linear range (0-12 mM and 0-5 mM, respectively) and with high sensitivities (0.24 and 0.54 µA cm-2 mM-1, respectively), which allowed monitoring of Type-1 diabetic patients with a simple dual analysis system. After the measurement, membranes were removed by disaggregation with the calcium-chelator phosphate buffer. At this point, new membranes could be electrodeposited, this time being selective to the same or another analyte. This conferred the system with on-demand biomarkers' selection capacity. The versatility and flexibility of the current architecture is expected to impact in POC analysis in applications ranging from homecare to sanitary emergencies.


Asunto(s)
Diabetes Mellitus Tipo 1/sangre , Dispositivos Laboratorio en un Chip , Teléfono Inteligente , Alginatos , Animales , Glucemia/análisis , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Ácido Láctico/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Sistemas de Atención de Punto , Distribución Aleatoria
6.
Biosens Bioelectron ; 117: 736-742, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30014948

RESUMEN

The determination of ethanol intoxication in whole blood samples may open the opportunity for a precise and quick point-of-measurement in the ambit of medical emergency or law enforcement. In contrast with traditional techniques based on breath sampling, direct blood measurements present greater immunity to errors specially in case of unconscious or non-collaborative patients. In this context, a portable, sensitive and easy-to-use instrument is highly desirable. In the current work we present a smartphone-based µPotentiostat which combines a novel circuital technique for sensor readout digitalization with a reusable lab-on-a-chip (LoC) concept. Such system allows both chronoamperometric and cyclic voltammetry measurements with a reduced number of electronic components on a very compact PCB (38.5â€¯× 22.5 mm2). Power, data-link and user interface are provided in combination with a standard smartphone, enabling cost-effectiveness and reconfigurability without sacrificing precision. The readout platform discussed in this work has been coupled to a LoC for point-of-care combining Pt electrodes microfabricated on silicon substrate for electrochemical measurement and a microfluidic structure of methacrylate for fluid management. Biosensing is enabled by in situ electrodeposition of a calcium alginate hydrogel containing horseradish peroxidase (HPR) and alcohol oxidase (AOx) for selective ethanol detection. Alginate membrane electrodeposition has been here optimized for rapid generation (2 min) and to retain the cellular fraction, thus allowing the measurement in whole blood samples. The µPotentiostat features a sensitivity of 36 nA/g L-1 to ethanol concentration in blood in the 0-1.25 g;L-1 range, with a limit of quantification (LoQ) of 4.5 nA, which is a suitable response for discerning the legal, illegal, severely illegal thresholds in a 40 µL sample of blood.


Asunto(s)
Alcoholes/análisis , Nivel de Alcohol en Sangre , Análisis Químico de la Sangre/instrumentación , Técnicas Electroquímicas , Teléfono Inteligente , Alcoholes/sangre , Técnicas Biosensibles , Análisis Químico de la Sangre/economía , Electrodos , Peroxidasa de Rábano Silvestre , Humanos , Dispositivos Laboratorio en un Chip , Límite de Detección
7.
Sci Rep ; 6: 33490, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27649784

RESUMEN

We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA