Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675104

RESUMEN

(1) Background: In developed countries, the prevalence of apical periodontitis (AP) varies from 20% to 50% for reasons that could be associated with the apical periodontitis microbiota ecology. (2) Methods: We performed a clinical study in the Odontology department of Toulouse hospital in France, to sequence the 16S rRNA gene of AP microbiota and collect clinical parameters from 94 patients. Forty-four patients were characterized with a PAI (periapical index of AP severity) score lower or equal to 3, while the others had superior scores (n = 50). (3) Results: The low diversity of granuloma microbiota is associated with the highest severity (PAI = 5) of periapical lesions (Odds Ratio 4.592, IC 95% [1.6329; 14.0728]; p = 0.001; notably, a lower relative abundance of Burkholderiaceae and a higher relative abundance of Pseudomonas and Prevotella). We also identified that high blood pressure (HBP) is associated with the increase in PAI scores. (4) Conclusions: Our data show that a low diversity of bacterial ecology of the AP is associated with severe PAI scores, suggesting a causal mechanism. Furthermore, a second risk factor was blood pressure associated with the severity of apical periodontitis.


Asunto(s)
Hipertensión , Microbiota , Periodontitis Periapical , Humanos , ARN Ribosómico 16S/genética , Bacterias/genética , Microbiota/genética
2.
Rev Endocr Metab Disord ; 20(4): 449-459, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31741266

RESUMEN

It has recently become evident that the periodontium (gingiva, desmodontal ligament, cementum and alveolar bone) and the associated microbiota play a pivotal role in regulating human health and diseases. The oral cavity is the second largest microbiota in the body with around 500 different bacterial species identified today. When disruption of oral cavity and dysbiosis occur, the proportion of strict anaerobic Gram-negative bacteria is then increased. Patients with periodontitis present 27 to 53% more risk to develop diabetes than the control population suggesting that periodontitis is an aggravating factor in the incidence of diabetes. Moreover, dysbiosis of oral microbiota is involved in both periodontal and metabolic disorders (cardiovascular diseases, dyslipidaemia …). The oral diabetic dysbiosis is characterized by a specific bacteria Porphyromonas, which is highly expressed in periodontal diseases and could exacerbate insulin resistance. In this review, we will address the nature of the oral microbiota and how it affects systemic pathologies with a bidirectional interaction. We also propose that using prebiotics like Akkermansia muciniphila may influence oral microbiota as novel therapeutic strategies. The discovery of the implication of oral microbiota for the control of metabolic diseases could be a new way for personalized medicine.


Asunto(s)
Enfermedades Metabólicas/microbiología , Boca/microbiología , Periodontitis/microbiología , Animales , Humanos , Enfermedades Metabólicas/metabolismo , Boca/metabolismo , Periodontitis/metabolismo , Factores de Riesgo
3.
Mol Syst Biol ; 13(3): 921, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28302863

RESUMEN

Gut microbiota dysbiosis has been implicated in a variety of systemic disorders, notably metabolic diseases including obesity and impaired liver function, but the underlying mechanisms are uncertain. To investigate this question, we transferred caecal microbiota from either obese or lean mice to antibiotic-free, conventional wild-type mice. We found that transferring obese-mouse gut microbiota to mice on normal chow (NC) acutely reduces markers of hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-inoculated mice, a phenotypic trait blunted in conventional NOD2 KO mice. Furthermore, transferring of obese-mouse microbiota changes both the gut microbiota and the microbiome of recipient mice. We also found that transferring obese gut microbiota to NC-fed mice then fed with a high-fat diet (HFD) acutely impacts hepatic metabolism and prevents HFD-increased hepatic gluconeogenesis compared to non-inoculated mice. Moreover, the recipient mice exhibit reduced hepatic PEPCK and G6Pase activity, fed glycaemia and adiposity. Conversely, transfer of lean-mouse microbiota does not affect markers of hepatic gluconeogenesis. Our findings provide a new perspective on gut microbiota dysbiosis, potentially useful to better understand the aetiology of metabolic diseases.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Hígado/metabolismo , Obesidad/microbiología , Animales , Disbiosis , Gluconeogénesis , Glucosa-6-Fosfatasa/genética , Ratones , Ratones Endogámicos C57BL , Obesidad/inducido químicamente , Obesidad/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética
4.
Diabetologia ; 60(4): 690-700, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28105518

RESUMEN

AIMS/HYPOTHESIS: Despite the current pandemic of metabolic diseases, our understanding of the diverse nature of the development of metabolic alterations in people who eat a high-fat diet (HFD) is still poor. We recently demonstrated a cardio-metabolic adaptation in mice fed an HFD, which was characterised by a specific gut and periodontal microbiota profile. Since the severity of hepatic disease is characterised by specific microRNA (miRNA) signatures and the gut microbiota is a key driver of both hepatic disease and miRNA expression, we analysed the expression of three hepatic miRNA and studied their correlation with hepatic triacylglycerol content and gut microbiota. METHODS: Two cohorts of C57BL/6 4-week-old wild-type (WT) male mice (n = 62 and n = 96) were fed an HFD for 3 months to provide a model of metabolic adaptation. Additionally 8-week-old C57BL/6 mice, either WT or of different genotypes, with diverse gut microbiota (ob/ob, Nod1, Cd14 knockout [Cd14KO] and Nod2) or without gut microbiota (axenic mice) were fed a normal chow diet. Following which, glycaemic index, body weight, blood glucose levels and hepatic triacylglycerol levels were measured. Gut (caecum) microbiota taxa were analysed by pyrosequencing. To analyse hepatic miRNA expression, real-time PCR was performed on total extracted miRNA samples. Data were analysed using two-way ANOVA followed by the Dunnett's post hoc test, or by the unpaired Student's t test. A cluster analysis and multivariate analyses were also performed. RESULTS: Our results demonstrated that the expression of miR-181a, miR-666 and miR-21 in primary murine hepatocytes is controlled by lipopolysaccharide in a dose-dependent manner. Of the gut microbiota, Firmicutes were positively correlated and Proteobacteria and Bacteroides acidifaciens were negatively correlated with liver triacylglycerol levels. Furthermore, the relative abundance of Firmicutes was negatively correlated with hepatic expression of miR-666 and miR-21. In contrast, the relative abundance of B. acidifaciens was positively correlated with miR-21. CONCLUSIONS/INTERPRETATION: We propose the involvement of hepatic miRNA, liver triacylglycerols and gut microbiota as a new triad that underlies the molecular mechanisms by which gut microbiota governs hepatic pathophysiology during metabolic adaptation to HFD.


Asunto(s)
Hígado/metabolismo , MicroARNs/metabolismo , Triglicéridos/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Genotipo , Hepatocitos/metabolismo , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Reacción en Cadena de la Polimerasa
5.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G1091-101, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27033119

RESUMEN

Periodontitis and type 2 diabetes are connected pandemic diseases, and both are risk factors for cardiovascular complications. Nevertheless, the molecular factors relating these two chronic pathologies are poorly understood. We have shown that, in response to a long-term fat-enriched diet, mice present particular gut microbiota profiles related to three metabolic phenotypes: diabetic-resistant (DR), intermediate (Inter), and diabetic-sensitive (DS). Moreover, many studies suggest that a dysbiosis of periodontal microbiota could be associated with the incidence of metabolic and cardiac diseases. We investigated whether periodontitis together with the periodontal microbiota may also be associated with these different cardiometabolic phenotypes. We report that the severity of glucose intolerance is related to the severity of periodontitis and cardiac disorders. In detail, alveolar bone loss was more accentuated in DS than Inter, DR, and normal chow-fed mice. Molecular markers of periodontal inflammation, such as TNF-α and plasminogen activator inhibitor-1 mRNA levels, correlated positively with both alveolar bone loss and glycemic index. Furthermore, the periodontal microbiota of DR mice was dominated by the Streptococcaceae family of the phylum Firmicutes, whereas the periodontal microbiota of DS mice was characterized by increased Porphyromonadaceae and Prevotellaceae families. Moreover, in DS mice the periodontal microbiota was indicated by an abundance of the genera Prevotella and Tannerella, which are major periodontal pathogens. PICRUSt analysis of the periodontal microbiome highlighted that prenyltransferase pathways follow the cardiometabolic adaptation to a high-fat diet. Finally, DS mice displayed a worse cardiac phenotype, percentage of fractional shortening, heart rhythm, and left ventricle weight-to-tibia length ratio than Inter and DR mice. Together, our data show that periodontitis combined with particular periodontal microbiota and microbiome is associated with metabolic adaptation to a high-fat diet related to the severity of cardiometabolic alteration.


Asunto(s)
Adaptación Fisiológica , Enfermedades Cardiovasculares/metabolismo , Dieta Alta en Grasa , Intolerancia a la Glucosa , Microbiota , Periodontitis/microbiología , Función Ventricular , Animales , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/microbiología , Dimetilaliltranstransferasa/metabolismo , Disbiosis/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Periodontitis/complicaciones , Inhibidor 1 de Activador Plasminogénico/metabolismo , Prevotella/aislamiento & purificación , Streptococcaceae/aislamiento & purificación , Factor de Necrosis Tumoral alfa/metabolismo
6.
Langmuir ; 31(43): 11921-31, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26466013

RESUMEN

Lipid monolayers are often considered as model membranes, but they are also the physiologic lipid part of the peripheral envelope of lipoproteins and cytosolic lipid bodies. However, their structural organization is still rather elusive, in particular when both cholesterol and sphingomyelin are present. To investigate such structural organization of hemimembranes, we measured, using alternative current voltammetry, the differential capacitance of condensed phosphatidylcholine-based monolayers as a function of applied potential, which is sensitive to their lipid composition and molecular arrangement. Especially, monolayers containing both sphingomyelin and cholesterol, at 15% w/w, presented specific characteristics of the differential capacitance versus potential curves recorded, which was indicative of specific interactions between these two lipid components. We then compared the behavior of two cholesterol derivatives (at 15% w/w), 21-methylpyrenyl-cholesterol (Pyr-met-Chol) and 22-nitrobenzoxadiazole-cholesterol (NBD-Chol), with that of cholesterol when present in model monolayers. Indeed, these two probes were chosen because of previous findings reporting opposite behaviors within bilayer membranes regarding their interaction with ordered lipids, with only Pyr-met-Chol mimicking cholesterol well. Remarkably, in monolayers containing sphingomyelin or not, Pyr-met-Chol and NBD-Chol presented contrasting behaviors, and Pyr-met-Chol mimicked cholesterol only in the presence of sphingomyelin. These two observations (i.e., optimal amounts of sphingomyelin and cholesterol, and the ability to discriminate between Pyr-met-Chol and NBD-Chol) can be interpreted by the existence of heterogeneities including ordered patches in sphingomyelin- and cholesterol-containing monolayers. Since such monolayer lipid arrangement shares some properties with the raft-type lipid microdomains well-described in sphingomyelin- and cholesterol-containing bilayer membranes, our data thus strongly suggest the existence of compact and ordered microdomains in model lipid monolayers.


Asunto(s)
Colesterol/química , Lípidos/química , Modelos Químicos , Esfingomielinas/química
7.
Biochem Biophys Res Commun ; 440(4): 533-8, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24103760

RESUMEN

Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described "lipid rafts" in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD-Chol non-specifically delivered to the cells.


Asunto(s)
Colesterol/análogos & derivados , Colesterol/química , Colorantes Fluorescentes/química , Lipoproteínas LDL/química , Coloración y Etiquetado , Línea Celular Tumoral , Células Cultivadas , Humanos , Lipoproteínas HDL/sangre , Lipoproteínas HDL/química , Lipoproteínas LDL/sangre , Membranas/química , Espectrometría de Fluorescencia
8.
Hepatology ; 55(4): 998-1007, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22121002

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) particles are known to be in complex with lipoproteins. As a result of this interaction, the low-density lipoprotein (LDL) receptor (LDLR) has been proposed as a potential entry factor for HCV; however, its implication in virus entry remains unclear. Here, we reinvestigated the role of the LDLR in the HCV life cycle by comparing virus entry to the mechanism of lipoprotein uptake. A small interfering RNA targeting the LDLR in Huh-7 cells reduced HCV infectivity, confirming that this receptor plays a role in the life cycle of HCV generated in cell culture. However, kinetics of internalization were much faster for lipoproteins than for infectious HCV particles. Furthermore, a decrease in HCV RNA replication was observed by blocking the LDLR with a specific antibody, and this was associated with an increase in the ratio of phosphatidylethanolamine to phosphatidylcholine in host cells. Nevertheless, a soluble form of the LDLR inhibited both HCV entry into the hepatocytes and its binding to the LDLR expressed on Chinese hamster ovary cells, suggesting a direct interaction between the HCV particle and the LDLR. Finally, we showed that modification of HCV particles by lipoprotein lipase (LPL) reduces HCV infectivity and increases HCV binding to LDLR. Importantly, LPL treatment also induced an increase in RNA internalization, suggesting that LDLR, at least in some conditions, leads to nonproductive internalization of HCV. CONCLUSION: The LDLR is not essential for infectious HCV particle entry, whereas the physiological function of this receptor is important for optimal replication of the HCV genome.


Asunto(s)
Hepacivirus/crecimiento & desarrollo , Hepacivirus/fisiología , Estadios del Ciclo de Vida/fisiología , Receptores de LDL/fisiología , Animales , Anticuerpos/farmacología , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Femenino , Células HEK293 , Hepacivirus/patogenicidad , Hepatocitos/patología , Hepatocitos/virología , Humanos , Riñón/citología , Riñón/virología , Ovario/citología , Ovario/virología , ARN Viral/metabolismo , Receptores de LDL/antagonistas & inhibidores , Receptores de LDL/efectos de los fármacos , Replicación Viral/fisiología
9.
J Biol Chem ; 286(39): 34426-39, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21828046

RESUMEN

During the orchestrated process leading to mature erythrocytes, reticulocytes must synthesize large amounts of hemoglobin, while eliminating numerous cellular components. Exosomes are small secreted vesicles that play an important role in this process of specific elimination. To understand the mechanisms of proteolipidic sorting leading to their biogenesis, we have explored changes in the composition of exosomes released by reticulocytes during their differentiation, in parallel to their physical properties. By combining proteomic and lipidomic approaches, we found dramatic alterations in the composition of the exosomes retrieved over the course of a 7-day in vitro differentiation protocol. Our data support a previously proposed model, whereby in reticulocytes the biogenesis of exosomes involves several distinct mechanisms for the preferential recruitment of particular proteins and lipids and suggest that the respective prominence of those pathways changes over the course of the differentiation process.


Asunto(s)
Diferenciación Celular/fisiología , Endosomas/metabolismo , Lípidos de la Membrana/biosíntesis , Proteínas de la Membrana/biosíntesis , Reticulocitos/metabolismo , Animales , Hemoglobinas/biosíntesis , Masculino , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Reticulocitos/citología
10.
Br J Nutr ; 107(9): 1296-304, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21929836

RESUMEN

The intestinal absorption of cholesterol and lipid micronutrients such as vitamin E has been shown to share some common pathways. The present study aims to further compare the uptake of cholesterol ([3H]cholesterol v. 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3-ol (NBD-cholesterol)) and tocopherol in Caco-2 TC-7 cells and in mouse intestine, with special focus on the respective roles of scavenger receptor class B type I (SR-BI) and Niemann-Pick C1-like 1 (NPC1L1). Conversely to NBD-cholesterol, the uptakes of [3H]cholesterol and tocopherol by Caco-2 cells were impaired by both block lipid transport-1 and ezetimibe, which inhibit SR-BI and NPC1L1, respectively. These inhibitions occurred only when cholesterol or tocopherol was delivered to cells included in micelles that contained biliary acid and at least oleic acid as a lipid. In vivo, after 2 h of digestion in mice, the uptake of the two cholesterol analogues and of tocopherol all showed distinct patterns along the duodenum-jejunum axis. [3H]Cholesterol uptake, which correlated closely to NPC1L1 mRNA expression in wild-type (wt) mice, was strongly inhibited by ezetimibe. Intestinal SR-BI overexpression did not change NPC1L1 expression and led to a significant increase in [3H]cholesterol uptake in the distal jejunum. Conversely, neither ezetimibe treatment nor SR-BI overexpression had an effect on NBD-cholesterol uptake. However, in contrast with SR-BI mRNA expression, tocopherol absorption increased strongly up to the distal jejunum in wt mice where it was specifically inhibited by ezetimibe, and was increased in the proximal intestine of intestinal SR-BI-overexpressing mice. Thus, cholesterol and tocopherol uptakes share common pathways in cell culture models, but display different in vivo absorption patterns associated with distinct contributions of SR-BI and NPC1L1.


Asunto(s)
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Colesterol/análogos & derivados , Regulación de la Expresión Génica , Proteínas de Transporte de Membrana/fisiología , Receptores Depuradores de Clase B/fisiología , gamma-Tocoferol/metabolismo , 4-Cloro-7-nitrobenzofurazano/metabolismo , Absorción , Animales , Azetidinas/farmacología , Ácidos y Sales Biliares/metabolismo , Células CACO-2 , Membrana Celular/metabolismo , Colesterol/metabolismo , Cromatografía Líquida de Alta Presión , Ciclopentanos/farmacología , Duodeno/metabolismo , Ezetimiba , Perfilación de la Expresión Génica , Humanos , Yeyuno/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Micelas , Tiosemicarbazonas/farmacología , Factores de Tiempo , Vitamina E/metabolismo
11.
Acta Diabetol ; 59(2): 243-258, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34648088

RESUMEN

The gut-brain-beta cell glucagon-like peptide-1 (GLP-1)-dependent axis and the clock genes both control insulin secretion. Evidence shows that a keystone of this molecular interaction could be the gut microbiota. We analyzed in mice the circadian profile of GLP-1 sensitivity on insulin secretion and the impact of the autonomic neuropathy, antibiotic treated in different diabetic mouse models and in germ-free colonized mice. We show that GLP-1sensitivity is maximal during the dark feeding period, i.e., the postprandial state. Coincidently, the ileum expression of GLP-1 receptor and peripherin is increased and tightly correlated with a subset of clock gene. Since both are markers of enteric neurons, it suggests a role in the gut-brain-beta cell GLP-1-dependent axis. We evaluated the importance of gut microbiota dysbiosis and found that the abundance of ileum bacteria, particularly Ruminococcaceae and Lachnospiraceae, oscillated diurnally, with a maximum during the dark period, along with expression patterns of a subset of clock genes. This diurnal pattern of circadian gene expression and Lachnospiraceae abundance was also observed in two separate mouse models of gut microbiota dysbiosis and of autonomic neuropathy with impaired GLP-1 sensitivity (1.high-fat diet-fed type 2 diabetic, 2.antibiotic-treated/germ-free mice). Our data show that GLP-1 sensitivity relies on specific pattern of intestinal clock gene expression and specific gut bacteria. This new statement opens opportunities to treat diabetic patient with GLP-1-based therapies by using on a possible pre/probiotic co-treatment to improve the time-dependent efficiency of these therapies.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Diabetes Mellitus Tipo 2/genética , Disbiosis , Péptido 1 Similar al Glucagón , Humanos , Ratones
12.
Hum Mutat ; 32(7): 751-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21394827

RESUMEN

Abetalipoproteinemia is a rare autosomal recessive disease characterized by low lipid levels and by the absence of apoB-containing lipoproteins. It is the consequence of microsomal triglyceride transfer protein (MTTP) deficiency. We report two patients with new MTTP mutations. We studied their functional consequences on the triglyceride transfer function using duodenal biopsies. We transfected MTTP mutants in HepG2 and HeLa cells to investigate their association with protein disulfide isomerase (PDI) and their localization at the endoplasmic reticulum. These children have a severe abetalipoproteinemia. Both of them had also a mild hypogammaglobulinemia. They are compound heterozygotes with c.619G>T and c.1237-28A>G mutations within the MTTP gene. mRNA analysis revealed abnormal splicing with deletion of exon 6 and 10, respectively. Deletion of exon 6 (Δ6-MTTP) introduced a frame shift in the reading frame and a premature stop codon at position 234. Despite the fact that Δ6-MTTP and Δ10-MTTP mutants were not capable of binding PDI, both MTTP mutant proteins normally localize at the endoplasmic reticulum. However, these two mutations induce a loss of MTTP triglyceride transfer activity. These two mutations lead to abnormal truncated MTTP proteins, incapable of binding PDI and responsible for the loss of function of MTTP, thereby explaining the severe abetalipoproteinemia phenotype of these children.


Asunto(s)
Abetalipoproteinemia/genética , Abetalipoproteinemia/patología , Proteínas Portadoras/genética , Exones/genética , Agammaglobulinemia/genética , Empalme Alternativo/genética , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Niño , Retículo Endoplásmico/metabolismo , Femenino , Células HeLa , Células Hep G2 , Humanos , Lactante , Masculino , Microsomas/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Triglicéridos/metabolismo
13.
Diagnostics (Basel) ; 11(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919425

RESUMEN

The aim of this study was to analyze the link between oral microbiota and obesity in humans. We conducted a pilot study including 19 subjects with periodontitis divided into two groups: normo-weighted subjects (NWS) with a body mass index (BMI) between 20 and 25 (n = 9) and obese subjects (OS) with a BMI > 30 (n = 10). Obesity was associated with a poor oral health status characterized by an increased number of missing teeth and a higher score of periodontal-support loss associated with dysbiotic oral microbiota (39.45 ± 3.74 vs. 26.41 ± 11.21, p = 0.03 for the Chao 1 index). Oral microbiota taxonomic analysis showed that the abundance of the Capnocytophaga genus was higher (2.47% ± 3.02 vs. 0.27% ± 0.29, p = 0.04) in OS compared to NWS. Obese females (OF) were characterized by an increase in the Streptococcus genus (34.12% ± 14.29 vs. 10.55% ± 10.42, p = 0.05) compared to obese males (OM), where the Neisseria genus was increased (5.75% ± 5.03 vs. 58.05% ± 30.64, p = 0.008). These first data suggest that sex/gender is determinant in the link between oral dysbiotic microbiota and obesity in patients with periodontitis. Our results could lead to recommendations concerning therapeutic strategies for obese patients with periodontitis following the sex/gender.

14.
J Physiol Biochem ; 77(1): 141-154, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32712883

RESUMEN

The product of Aoc3 gene is known as vascular adhesion protein-1 (VAP-1), a glycoprotein contributing to leukocyte extravasation and exhibiting semicarbazide-sensitive amine oxidase activity (SSAO). Regarding the immune functions of VAP-1/SSAO, it is known that mice bearing Aoc3 gene knock-out (AOC3KO) exhibit defects in leukocyte migration similar to those of mice expressing a mutated VAP-1 lacking functional SSAO activity (knock-in, AOC3KI). However, it has not been reported whether these models differ regarding other disturbances. Thus, we further compared endocrine-metabolic phenotypes of AOC3KO and AOC3KI mice to their respective control. Special attention was paid on adiposity, glucose and lipid handling, since VAP-1/SSAO is highly expressed in adipose tissue (AT). In both mouse lines, no tissue SSAO activity was found, while Aoc3 mRNA was absent in AOC3KO only. Although food consumption was unchanged, both AOC3KO and AOC3KI mice were heavier and fatter than their respective controls. Other alterations commonly found in adipocytes from both lines were loss of benzylamine insulin-like action with unchanged insulin lipogenic responsiveness and adiponectin expression. A similar downregulation of inflammatory markers (CD45, IL6) was found in AT. Glucose handling and liver mass remained unchanged, while circulating lipid profile was distinctly altered, with increased cholesterol in AOC3KO only. These results suggest that the lack of oxidase activity found in AOC3KI is sufficient to reproduce the metabolic disturbances observed in AOC3KO mice, save those related with cholesterol transport. Modulation of SSAO activity therefore constitutes a potential target for the treatment of cardiometabolic diseases, especially obesity when complicated by low-grade inflammation.


Asunto(s)
Tejido Adiposo , Amina Oxidasa (conteniendo Cobre)/fisiología , Moléculas de Adhesión Celular/fisiología , Inflamación/metabolismo , Obesidad/metabolismo , Adipocitos , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Amina Oxidasa (conteniendo Cobre)/genética , Animales , Moléculas de Adhesión Celular/genética , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Arterioscler Thromb Vasc Biol ; 29(7): 1125-30, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19372457

RESUMEN

OBJECTIVE: Several findings argue for a protective effect of high-density lipoproteins (HDLs) against endothelial dysfunction. The molecular mechanisms underlying this protective effect are not fully understood, although recent works suggest that the actions of HDL on the endothelium are initiated by multiple interactions between HDLs (lipid or protein moiety) and cell surface receptors. We previously showed that the mitochondrial related F(1)-ATPase is a cell surface receptor for HDLs and their main atheroprotective apolipoprotein (apoA-I). Herein we test the hypothesis that the cell surface F(1)-ATPase may contribute to the ability of apoA-I and HDLs to maintain endothelial cell survival. METHODS AND RESULTS: Cell imaging and binding assays confirmed the presence of the F(1)-ATPase at the surface of human umbilical vein endothelial cells (HUVECs) and its ability to bind apoA-I. Cell surface F(1)-ATPase activity (ATP hydrolysis into ADP) was stimulated by apoA-I and was inhibited by its specific inhibitor IF(1)-H49K. Furthermore the antiapoptotic and proliferative effects of apoA-I on HUVECs were totally blocked by the F(1)-ATPase ligands IF(1)-H49K, angiostatin and anti-betaF(1)-ATPase antibody, independently of the scavenger receptor SR-BI and ABCA1. CONCLUSIONS: This study suggests an important contribution of cell surface F(1)-ATPase to apoA-I-mediated endothelial cell survival, which may contribute to the atheroprotective functions of apoA-I.


Asunto(s)
Apolipoproteína A-I/fisiología , Apoptosis/fisiología , Proliferación Celular , Células Endoteliales/fisiología , ATPasas de Translocación de Protón/fisiología , Células Cultivadas , Humanos , Venas Umbilicales/citología
16.
Cell Microbiol ; 10(3): 606-17, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17979982

RESUMEN

Virus entry is a major step in which host-cell lipids can play an essential role. In this report, we investigated the importance of sphingolipids in hepatitis C virus (HCV) entry. For this purpose, sphingomyelin present in the plasma membrane of target cells was hydrolysed into ceramide by sphingomyelinase treatment. Interestingly, ceramide enrichment of the plasma membrane strongly inhibited HCV entry. To understand how ceramide affected HCV entry, we analysed the effect of ceramide enrichment of the plasma membrane on three cell-surface molecules identified as entry factors for HCV: CD81 tetraspanin, scavenger receptor BI and Claudin-1. These proteins, which we found to be mainly associated with detergent-soluble membranes in Huh-7 cells, were not relocated in detergent-resistant microdomains after sphingomyelin hydrolysis into ceramide. Importantly, ceramide enrichment of the plasma membrane led to a 50% decrease in cell-surface CD81, which was due to its ATP-independent internalization. Our results strongly suggest that the ceramide-induced internalization of CD81 is responsible for the inhibitory effect of ceramide on HCV entry. Together, these data indicate that some specific lipids of the plasma membrane are essential for HCV entry and highlight plasma membrane lipids as potential targets to block HCV entry.


Asunto(s)
Antígenos CD/metabolismo , Membrana Celular/metabolismo , Ceramidas/metabolismo , Hepacivirus/fisiología , Internalización del Virus , Línea Celular , Claudina-1 , Humanos , Proteínas de la Membrana/metabolismo , Receptores Depuradores de Clase B/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo , Tetraspanina 28
17.
J Allergy Clin Immunol ; 121(4): 962-8.e6, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18249437

RESUMEN

BACKGROUND: The peroxisome proliferator-activated receptors (PPARs) alpha, beta/delta, and gamma are ligand-activated transcription factors belonging to the nuclear receptor superfamily. In addition to their regulatory role on lipid and glucose metabolism, they exert anti-inflammatory properties. In skin both PPAR-alpha and PPAR-beta/delta regulate keratinocyte proliferation/differentiation and contribute to wound healing. The 3 PPAR isoforms are expressed by several cell types recruited into the dermis during inflammation. OBJECTIVE: We have investigated the role of PPAR-alpha in the regulation of atopic dermatitis (AD), a common skin inflammatory disease. METHODS: We chose a mouse model of inflammatory dermatosis with immunologic features of AD and used epicutaneous sensitization with ovalbumin in the absence of adjuvant, which mimics the human pathology. RESULTS: On antigen sensitization, PPAR-alpha-deficient mice display increased epidermal thickening, dermal recruitment of inflammatory cells, lung inflammation, airway hyperresponsiveness, and IgE and IgG2a production compared with their wild-type counterparts. Increased inflammation was correlated to an enhancement of TH2 and, to a greater extent, TH1 responses and to increased skin expression of nuclear factor kappaB. Interestingly, PPAR-alpha expression was decreased in eczematous skin from patients with AD compared with skin from nonatopic donors, suggesting that defective PPAR-alpha expression might contribute to the pathology. Topical application of WY14643, a specific PPAR-alpha agonist, significantly decreased antigen-induced skin inflammation in the AD model. CONCLUSION: PPAR-alpha acts as a negative regulator of skin inflammation in AD.


Asunto(s)
Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Inmunoglobulina E/biosíntesis , Inmunoglobulina G/biosíntesis , Mediadores de Inflamación/fisiología , PPAR alfa/fisiología , Administración Cutánea , Administración Tópica , Adulto , Animales , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/metabolismo , Hiperreactividad Bronquial/patología , Dermatitis Atópica/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , PPAR alfa/deficiencia , PPAR alfa/genética , Pirimidinas/administración & dosificación , Pirimidinas/farmacología
18.
Mol Cancer Ther ; 7(12): 3707-18, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19074846

RESUMEN

The microsomal antiestrogen-binding site (AEBS) is a high-affinity membranous binding site for the antitumor drug tamoxifen that selectively binds diphenylmethane derivatives of tamoxifen such as PBPE and mediates their antiproliferative properties. The AEBS is a hetero-oligomeric complex consisting of 3beta-hydroxysterol-Delta8-Delta7-isomerase and 3beta-hydroxysterol-Delta7-reductase. High-affinity AEBS ligands inhibit these enzymes leading to the massive intracellular accumulation of zymostenol or 7-dehydrocholesterol (DHC), thus linking AEBS binding to the modulation of cholesterol metabolism and growth control. The aim of the present study was to gain more insight into the control of breast cancer cell growth by AEBS ligands. We report that PBPE and tamoxifen treatment induced differentiation in human breast adenocarcinoma cells MCF-7 as indicated by the arrest of cells in the G0-G1 phase of the cell cycle, the increase in the cell volume, the accumulation and secretion of lipids, and a milk fat globule protein found in milk. These effects were observed with other AEBS ligands and with zymostenol and DHC. Vitamin E abrogates the induction of differentiation and reverses the control of cell growth produced by AEBS ligands, zymostenol, and DHC, showing the importance of the oxidative processes in this effect. AEBS ligands induced differentiation in estrogen receptor-negative mammary tumor cell lines SKBr-3 and MDA-MB-468 but with a lower efficiency than observed with MCF-7. Together, these data show that AEBS ligands exert an antiproliferative effect on mammary cancer cells by inducing cell differentiation and growth arrest and highlight the importance of cholesterol metabolism in these effects.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Colesterol/metabolismo , Moduladores de los Receptores de Estrógeno/farmacología , Microsomas/metabolismo , Sitios de Unión , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Citometría de Flujo , Humanos , Ligandos , Lípidos/química , Proteínas de la Leche/química , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Factores de Tiempo
19.
Biochimie ; 159: 72-80, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30703476

RESUMEN

The identification of a functional molecular moiety relating the lipopolysaccharides (LPSs) to their capacity to induce inflammation-mediated metabolic diseases needed to be performed. We previously described a proportional increase in the relative abundance of the 16 SrDNA bacterial gene from the genus Ralstonia, within the microbiota from the adipose tissue stroma vascular fraction of obese patients, suggesting a causal role of the bacteria. Therefore, we first characterized the structures of the lipids A, the inflammatory inducing moieties of LPSs, of three Ralstonia species: Ralstonia eutropha, R. mannitolilytica and R. pickettii, and then compared each, in terms of in vitro inflammatory capacities. R. pickettii lipid A displaying only 5 Fatty Acids (FA) was a weaker inducer of inflammation, compared to the two other species harboring hexa-acylated lipids A, despite the presence of 2 AraN substituents on the phosphate groups. With regard to in vitro pro-inflammatory activities, TNF-α and IL-6 inducing capacities were compared on THP-1 cells treated with LPSs isolated from the three Ralstonia. R. pickettii, with low inflammatory capacities, and recently involved in nosocomial outcomes, could explain the low inflammatory level reported in previous studies on diabetic patients and animals. In addition, transmission electron microscopy was performed on the three Ralstonia species. It showed that the R. pickettii under-acylated LPSs, with a higher level of phosphate substitution had the capacity of producing more outer membrane vesicles (OMVs). The latter could facilitate transfer of LPSs to the blood and explain the increased low-grade inflammation observed in obese/diabetic patients.


Asunto(s)
Citocinas/metabolismo , Lípido A , Obesidad/microbiología , Ralstonia , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Lípido A/química , Lípido A/metabolismo , Lípido A/toxicidad , Ralstonia/química , Ralstonia/aislamiento & purificación , Ralstonia/metabolismo , Relación Estructura-Actividad , Células THP-1
20.
Arterioscler Thromb Vasc Biol ; 27(10): 2214-21, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17690314

RESUMEN

OBJECTIVE: Whereas estradiol prevents fatty streak deposit in immunocompetent apoE-/- or LDLr-/- mice, it is totally ineffective in immunodeficient mice, underlining the key role of immunoinflammation in this effect. In the present work, the role of several major pro- and antiinflammatory cytokines involved in the atheromatous process was evaluated in the effect of estradiol on fatty streak constitution. METHODS AND RESULTS: The preventive effect of estradiol was fully maintained in LDLr-/- mice grafted with bone marrow from either IFN-gamma or interleukin (IL)-12-deficient mice, showing that this beneficial effect was not mediated through a specific decrease in the production of these 2 proinflammatory cytokines. Furthermore, IL-10-/- apoE-/- mice remained protected by estradiol, excluding a significant contribution of this antiinflammatory cytokine. In contrast, the protective effect of estradiol was (1) associated with enhanced aortic expression of TGF-beta1 in apoE-/- mice during early steps of atherogenesis; (2) abolished and even reversed in apoE-/- mice administered with a neutralizing anti-TGF-beta antibody; (3) abolished in LDLr-/- mice grafted with bone marrow from Smad3-deficient mice. CONCLUSIONS: The status of the TGF-beta pathway crucially determines the antiatherogenic effect of estradiol in hypercholesterolemic mice, whereas neither IFN-gamma, IL-12, nor IL-10 are specifically involved in this protection.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/metabolismo , Estradiol/metabolismo , Hipercolesterolemia/complicaciones , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Anticuerpos Monoclonales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/etiología , Aterosclerosis/prevención & control , Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Implantes de Medicamentos , Estradiol/administración & dosificación , Femenino , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Interferón gamma/deficiencia , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-10/deficiencia , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-12/deficiencia , Interleucina-12/genética , Interleucina-12/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovariectomía , Receptores de LDL/deficiencia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transducción de Señal , Proteína smad3/deficiencia , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/inmunología , Irradiación Corporal Total
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA