Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 24(9): 9660-6, 2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-27137579

RESUMEN

A large extinction ratio optical shutter has been demonstrated using electrowetting liquids. The device is based on switching between a liquid-liquid interface curvature that produces total internal reflection and one that does not. The interface radius of curvature can be tuned continuously from 9 mm at 0 V to -45 mm at 26 V. Extinction ratios from 55.8 to 66.5 dB were measured. The device shows promise for ultracold chip-scale atomic clocks.

2.
Opt Express ; 23(20): 25838-45, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26480097

RESUMEN

An adaptive electrowetting-based element with focusing and steering capability has been demonstrated in a monolithic design. Curvature and tip-tilt variation have been demonstrated using low voltages. A steering range of up to 4.3° and lens tuning of 18 diopters have been measured at 30 V DC and 21 V DC, respectively.

3.
Appl Opt ; 54(20): 6224-9, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26193397

RESUMEN

Electrowetting lenses with record low power consumption (microwatts) have been demonstrated using high-quality parylene AF-4 dielectric layers and large dodecyl sulfate ions. Water and propylene glycol are interchanged as the polar liquid to enable diverging and converging lens operation achievable with the application of 15 V. The optical quality of the lenses is comparable to conventional microlenses and the tuning exhibits very little (<0.5°) contact angle hysteresis.

4.
Rev Sci Instrum ; 85(1): 013901, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24517776

RESUMEN

We present a novel experimental method for quantitatively characterizing the temperature-dependent mechanical behavior of individual nanostructures during uniaxial straining. By combining a microelectromechanical tensile testing device with a low thermal mass and digital image correlation providing nm-level displacement resolution, we show successful incorporation of a testing platform in a vacuum cryostat system with an integrated heater and temperature control. Characterization of the local sample temperature and time-dependent response at both low and high temperature demonstrates a testing range of ∼90-475 K and steady-state drift rates less than 0.04 K/min. In situ operation of the tensile testing device employing resistively heated thermal actuators while imaging with an optical microscope enables high-resolution displacement measurements, from which stress-strain behavior of the nanoscale specimens is deduced. We demonstrate the efficacy of our approach in measuring the temperature dependence of tensile strength in nominally defect-free ⟨110⟩ Pd nanowhiskers. We uncover a pronounced sensitivity of the plastic response to testing temperature over a range of ∼300 K, with an ultimate strength in excess of 6 GPa at low temperature. The results are discussed in the context of thermally activated deformation mechanisms and defect nucleation in defect-free metallic nanostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA