Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Physiol Endocrinol Metab ; 313(6): E641-E650, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28790027

RESUMEN

Intracellular calcium influences an array of pathways and affects cellular processes. With the rapidly progressing research investigating the molecular identity and the physiological roles of the mitochondrial calcium uniporter (MCU) complex, we now have the tools to understand the functions of mitochondrial Ca2+ in the regulation of pathophysiological processes. Herein, we describe the role of key MCU complex components in insulin resistance in mouse and human adipose tissue. Adipose tissue gene expression was analyzed from several models of obese and diabetic rodents and in 72 patients with obesity as well as in vitro insulin-resistant adipocytes. Genetic manipulation of MCU activity in 3T3-L1 adipocytes allowed the investigation of the role of mitochondrial calcium uptake. In insulin-resistant adipocytes, mitochondrial calcium uptake increased and several MCU components were upregulated. Similar results were observed in mouse and human visceral adipose tissue (VAT) during the progression of obesity and diabetes. Intriguingly, subcutaneous adipose tissue (SAT) was spared from overt MCU fluctuations. Furthermore, MCU expression returned to physiological levels in VAT of patients after weight loss by bariatric surgery. Genetic manipulation of mitochondrial calcium uptake in 3T3-L1 adipocytes demonstrated that changes in mitochondrial calcium concentration ([Ca2+]mt) can affect mitochondrial metabolism, including oxidative enzyme activity, mitochondrial respiration, membrane potential, and reactive oxygen species formation. Finally, our data suggest a strong relationship between [Ca2+]mt and the release of IL-6 and TNFα in adipocytes. Altered mitochondrial calcium flux in fat cells may play a role in obesity and diabetes and may be associated with the differential metabolic profiles of VAT and SAT.


Asunto(s)
Adipocitos/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Resistencia a la Insulina/fisiología , Mitocondrias/metabolismo , Células 3T3-L1 , Adulto , Animales , Estudios de Casos y Controles , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Femenino , Humanos , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Persona de Mediana Edad , Mitocondrias/patología , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Estado Prediabético/genética , Estado Prediabético/metabolismo , Estado Prediabético/patología , Grasa Subcutánea/metabolismo , Grasa Subcutánea/patología
2.
Circ Res ; 117(8): 707-19, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26243800

RESUMEN

RATIONALE: Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. OBJECTIVE: How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. METHODS AND RESULTS: Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. CONCLUSIONS: Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications.


Asunto(s)
Cardiomegalia/prevención & control , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Miocitos Cardíacos/enzimología , Sistemas de Mensajero Secundario , Adenoviridae/genética , Animales , Animales Recién Nacidos , Cardiomegalia/enzimología , Cardiomegalia/genética , Cardiomegalia/patología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Modelos Animales de Enfermedad , Vectores Genéticos , Masculino , Microdominios de Membrana/enzimología , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Fosforilación , Interferencia de ARN , Ratas Sprague-Dawley , Ratas Wistar , Sistemas de Mensajero Secundario/efectos de los fármacos , Factores de Tiempo , Transducción Genética , Transfección
3.
J Biol Chem ; 288(15): 10750-8, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23400777

RESUMEN

The direct measurement of mitochondrial [Ca(2+)] with highly specific probes demonstrated that major swings in organellar [Ca(2+)] parallel the changes occurring in the cytosol and regulate processes as diverse as aerobic metabolism and cell death by necrosis and apoptosis. Despite great biological relevance, insight was limited by the complete lack of molecular understanding. The situation has changed, and new perspectives have emerged following the very recent identification of the mitochondrial Ca(2+) uniporter, the channel allowing rapid Ca(2+) accumulation across the inner mitochondrial membrane.


Asunto(s)
Apoptosis/fisiología , Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Canales de Calcio/genética , Humanos , Mitocondrias/genética , Necrosis
4.
Circ Res ; 108(8): 929-39, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21330599

RESUMEN

RATIONALE: cAMP and cGMP are intracellular second messengers involved in heart pathophysiology. cGMP can potentially affect cAMP signals via cGMP-regulated phosphodiesterases (PDEs). OBJECTIVE: To study the effect of cGMP signals on the local cAMP response to catecholamines in specific subcellular compartments. METHODS AND RESULTS: We used real-time FRET imaging of living rat ventriculocytes expressing targeted cAMP and cGMP biosensors to detect cyclic nucleotides levels in specific locales. We found that the compartmentalized, but not the global, cAMP response to isoproterenol is profoundly affected by cGMP signals. The effect of cGMP is to increase cAMP levels in the compartment where the protein kinase (PK)A-RI isoforms reside but to decrease cAMP in the compartment where the PKA-RII isoforms reside. These opposing effects are determined by the cGMP-regulated PDEs, namely PDE2 and PDE3, with the local activity of these PDEs being critically important. The cGMP-mediated modulation of cAMP also affects the phosphorylation of PKA targets and myocyte contractility. CONCLUSIONS: cGMP signals exert opposing effects on local cAMP levels via different PDEs the activity of which is exerted in spatially distinct subcellular domains. Inhibition of PDE2 selectively abolishes the negative effects of cGMP on cAMP and may have therapeutic potential.


Asunto(s)
Catecolaminas/fisiología , AMP Cíclico/fisiología , GMP Cíclico/fisiología , Miocitos Cardíacos/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/biosíntesis , Miocitos Cardíacos/citología , Miocitos Cardíacos/enzimología , Ratas
5.
J Biol Chem ; 286(18): 16285-96, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21393242

RESUMEN

Enzymes of the phosphodiesterase 3 (PDE3) and PDE4 families each regulate the activities of both protein kinases A (PKAs) and exchange proteins activated by cAMP (EPACs) in cells of the cardiovascular system. At present, the mechanisms that allow selected PDEs to individually regulate the activities of these two effectors are ill understood. The objective of this study was to determine how a specific PDE3 variant, namely PDE3B, interacts with and regulates EPAC1-based signaling in human arterial endothelial cells (HAECs). Using several biochemical approaches, we show that PDE3B and EPAC1 bind directly through protein-protein interactions. By knocking down PDE3B expression or by antagonizing EPAC1 binding with PDE3B, we show that PDE3B regulates cAMP binding by its tethered EPAC1. Interestingly, we also show that PDE3B binds directly to p84, a PI3Kγ regulatory subunit, and that this interaction allows PI3Kγ recruitment to the PDE3B-EPAC1 complex. Of potential cardiovascular importance, we demonstrate that PDE3B-tethered EPAC1 regulates HAEC PI3Kγ activity and that this allows dynamic cAMP-dependent regulation of HAEC adhesion, spreading, and tubule formation. We identify and molecularly characterize a PDE3B-based "signalosome" that integrates cAMP- and PI3Kγ-encoded signals and show how this signal integration regulates HAEC functions of importance in angiogenesis.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Células Endoteliales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neovascularización Fisiológica/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Arterias/citología , Arterias/metabolismo , Adhesión Celular , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Endoteliales/citología , Humanos
6.
J Cell Biol ; 175(3): 441-51, 2006 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-17088426

RESUMEN

There is a growing appreciation that the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway is organized to form transduction units that function to deliver specific messages. Such organization results in the local activation of PKA subsets through the generation of confined intracellular gradients of cAMP, but the mechanisms responsible for limiting the diffusion of cAMP largely remain to be clarified. In this study, by performing real-time imaging of cAMP, we show that prostaglandin 1 stimulation generates multiple contiguous, intracellular domains with different cAMP concentration in human embryonic kidney 293 cells. By using pharmacological and genetic manipulation of phosphodiesterases (PDEs), we demonstrate that compartmentalized PDE4B and PDE4D are responsible for selectively modulating the concentration of cAMP in individual subcellular compartments. We propose a model whereby compartmentalized PDEs, rather than representing an enzymatic barrier to cAMP diffusion, act as a sink to drain the second messenger from discrete locations, resulting in multiple and simultaneous domains with different cAMP concentrations irrespective of their distance from the site of cAMP synthesis.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Alprostadil/farmacología , AMP Cíclico/metabolismo , Citosol/efectos de los fármacos , Sistemas de Mensajero Secundario/efectos de los fármacos , 3',5'-AMP Cíclico Fosfodiesterasas/genética , Técnicas Biosensibles , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Citosol/metabolismo , Difusión , Activación Enzimática/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Microscopía Confocal , Señales de Clasificación de Proteína/genética , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transfección
7.
Biochem Biophys Res Commun ; 397(4): 750-5, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20541535

RESUMEN

In this study, the applicability of fluorescently labeled adenosine analogue-oligoarginine conjugates (ARC-Photo probes) for monitoring of protein kinase A (PKA) activity in living cells was demonstrated. ARC-Photo probes possessing subnanomolar affinity towards the catalytic subunit of PKA (PKAc) and competitive with the regulatory subunit (PKAr), penetrate cell plasma membrane and associate with PKAc fused with yellow fluorescent protein (PKAc-YFP). Detection of inter-molecular Förster resonance energy transfer (FRET) efficiency between the fluorophores of the fusion protein and ARC-Photo probe can be used for both the evaluation of non-labeled inhibitors of PKAc and for monitoring of cAMP signaling via detection of changes in the activity of PKA as a cAMP downstream effector.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Adenosina/química , Arginina/química , Proteínas Bacterianas/química , Membrana Celular/enzimología , AMP Cíclico/análisis , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Humanos , Proteínas Luminiscentes/química , Microscopía Fluorescente , Oligopéptidos/química
8.
Circ Res ; 103(8): 836-44, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18757829

RESUMEN

Protein kinase A (PKA) is a key regulatory enzyme that, on activation by cAMP, modulates a wide variety of cellular functions. PKA isoforms type I and type II possess different structural features and biochemical characteristics, resulting in nonredundant function. However, how different PKA isoforms expressed in the same cell manage to perform distinct functions on activation by the same soluble intracellular messenger, cAMP, remains to be established. Here, we provide a mechanism for the different function of PKA isoforms subsets in cardiac myocytes and demonstrate that PKA-RI and PKA-RII, by binding to AKAPs (A kinase anchoring proteins), are tethered to different subcellular locales, thus defining distinct intracellular signaling compartments. Within such compartments, PKA-RI and PKA-RII respond to distinct, spatially restricted cAMP signals generated in response to specific G protein-coupled receptor agonists and regulated by unique subsets of the cAMP degrading phosphodiesterases. The selective activation of individual PKA isoforms thus leads to phosphorylation of unique subsets of downstream targets.


Asunto(s)
Proteína Quinasa Tipo II Dependiente de AMP Cíclico/metabolismo , Proteína Quinasa Tipo I Dependiente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Miocitos Cardíacos/enzimología , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Animales Recién Nacidos , Técnicas Biosensibles , Células CHO , Proteínas de Unión al Calcio/metabolismo , Cricetinae , Cricetulus , Proteína Quinasa Tipo I Dependiente de AMP Cíclico/genética , Proteína Quinasa Tipo II Dependiente de AMP Cíclico/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Hidrolasas Diéster Fosfóricas/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Troponina I/metabolismo
9.
Circ Res ; 98(2): 226-34, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16357307

RESUMEN

beta-Adrenergic signaling via cAMP generation and PKA activation mediates the positive inotropic effect of catecholamines on heart cells. Given the large diversity of protein kinase A targets within cardiac cells, a precisely regulated and confined activity of such signaling pathway is essential for specificity of response. Phosphodiesterases (PDEs) are the only route for degrading cAMP and are thus poised to regulate intracellular cAMP gradients. Their spatial confinement to discrete compartments and functional coupling to individual receptors provides an efficient way to control local [cAMP]i in a stimulus-specific manner. By performing real-time imaging of cyclic nucleotides in living ventriculocytes we identify a prominent role of PDE2 in selectively shaping the cAMP response to catecholamines via a pathway involving beta3-adrenergic receptors, NO generation and cGMP production. In cardiac myocytes, PDE2, being tightly coupled to the pool of adenylyl cyclases activated by beta-adrenergic receptor stimulation, coordinates cGMP and cAMP signaling in a novel feedback control loop of the beta-adrenergic pathway. In this, activation of beta3-adrenergic receptors counteracts cAMP generation obtained via stimulation of beta1/beta2-adrenoceptors. Our study illustrates the key role of compartmentalized PDE2 in the control of catecholamine-generated cAMP and furthers our understanding of localized cAMP signaling.


Asunto(s)
GMP Cíclico/fisiología , Contracción Miocárdica/efectos de los fármacos , Óxido Nítrico/fisiología , Hidrolasas Diéster Fosfóricas/fisiología , Receptores Adrenérgicos beta/fisiología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Calcio/metabolismo , Células Cultivadas , AMP Cíclico/biosíntesis , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2 , Activación Enzimática , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/fisiología , Norepinefrina/farmacología , Hidrolasas Diéster Fosfóricas/análisis , Ratas , Ratas Sprague-Dawley , Transducción de Señal
10.
J Mol Biol ; 354(3): 546-55, 2005 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-16257413

RESUMEN

Förster resonance energy transfer (FRET) technology has been used to develop genetically encoded fluorescent indicators for a variety of intracellular molecular events. Often, however, the poor dynamic range of such reporters prevents detection of subtle but physiologically relevant signals. Here we present a strategy for improving FRET efficiency between donor and acceptor fluorophores in a green fluorescent protein (GFP)-based protein indicator for cAMP. Such indicator is based on protein kinase A (PKA) and was generated by fusion of CFP and YFP to the regulatory and catalytic subunits of PKA, respectively. Our approach to improve FRET efficiency was to perform molecular dynamic simulations and modelling studies of the linker peptide (L11) joining the CFP moiety and the regulatory subunit in order to define its structure and use this information to design an improved linker. We found that L11 contains the X-Y-P-Y-D motif, which adopts a turn-like conformation that is stiffly conserved along the simulation time. Based on this finding, we designed a new linker, L22 in which the YPY motif was doubled in order to generate a stiffer peptide and reduce the mobility of the chromophore within the protein complex, thus favouring CFP/YFP dipole-dipole interaction and improving FRET efficiency. Molecular dynamic simulations of L22 showed, unexpectedly, that the conformational behaviour of L22 was very loose. Based on the analysis of the three principal conformational states visited by L22 during the simulation time, we modified its sequence in order to increase its rigidity. The resulting linker L20 displayed lower flexibility and higher helical content than L22. When inserted in the cAMP indicator, L20 yielded a probe showing almost doubled FRET efficiency and a substantially improved dynamic range.


Asunto(s)
Reactivos de Enlaces Cruzados/química , AMP Cíclico/análisis , AMP Cíclico/química , Diseño de Fármacos , Transferencia Resonante de Energía de Fluorescencia , Péptidos/química , Secuencia de Aminoácidos , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Cinética , Microscopía Fluorescente , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia
11.
Circ Res ; 95(1): 67-75, 2004 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-15178638

RESUMEN

Cardiac myocytes have provided a key paradigm for the concept of the compartmentalized cAMP generation sensed by AKAP-anchored PKA. Phosphodiesterases (PDEs) provide the sole route for degrading cAMP in cells and are thus poised to regulate intracellular cAMP gradients. PDE3 and PDE4 represent the major cAMP degrading activities in rat ventriculocytes. By performing real-time imaging of cAMP in situ, we establish the hierarchy of these PDEs in controlling cAMP levels in basal conditions and on stimulation with a beta-adrenergic receptor agonist. PDE4, rather than PDE3, appears to be responsible for modulating the amplitude and duration of the cAMP response to beta-agonists. PDE3 and PDE4 localize to distinct compartments and this may underpin their different functional roles. Our findings indicate the importance of distinctly localized PDE isoenzymes in determining compartmentalized cAMP signaling.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/fisiología , AMP Cíclico/metabolismo , Miocitos Cardíacos/enzimología , 3',5'-AMP Cíclico Fosfodiesterasas/análisis , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Agonistas alfa-Adrenérgicos/farmacología , Animales , Animales Recién Nacidos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Transferencia Resonante de Energía de Fluorescencia , Norepinefrina/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Ratas
12.
Methods Mol Biol ; 307: 1-13, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15988051

RESUMEN

Cyclic adenosine monophosphate (cAMP) controls the physiological response to many diverse extracellular stimuli. To maintain signal specificity, cAMP-mediated signaling is finely tuned by means of a complex array of proteins that control the spatial and temporal dynamics of the second messenger within the cell. To unravel the way a cell encodes cAMP signals, new biosensors have recently been introduced that allow imaging of the second messenger in living cells with high spatial resolution. The more recent generation of such biosensors exploits the phenomenon of fluorescence resonance energy transfer between the green fluorescent protein- tagged subunits of a chimeric protein kinase A, as the way to visualize and measure the dynamic fluctuations of cAMP. This chapter describes the molecular basis on which such a genetically encoded cAMP sensor relies and the tools and methods required to perform cAMP measurements in living samples.


Asunto(s)
Técnicas Biosensibles , AMP Cíclico/análisis , Citoplasma/química , Transferencia Resonante de Energía de Fluorescencia , Animales , Técnicas Biosensibles/métodos , Células COS , Cricetinae , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/análisis , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Citoplasma/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética
13.
Methods Mol Biol ; 284: 259-70, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15173622

RESUMEN

cAMP is a ubiquitous second messenger that controls numerous cellular events including movement, growth, metabolism, contraction, and synaptic plasticity. With the emerging concept of compartmentalization of cAMP-dependent signaling, a detailed study of the spatio-temporal intracellular dynamics of cAMP is required. Here we describe a new methodology for monitoring fluctuations of cAMP in living cells, based on the use of a genetically encoded biosensor. The regulatory and catalytic subunits of the main cAMP effector, the protein kinase A (PKA), fused with two suitable green fluorescent protein (GFP) mutants is used for measuring changes in fluorescence resonance energy transfer (FRET) that correlate with changes in intracellular cAMP levels. This method allows the study of cAMP fluctuations in living cells with high resolution both in time and in space.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Sistemas de Mensajero Secundario , Nucleótidos de Adenina/análisis , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Células CHO , Cricetinae , Cricetulus , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Fluorescentes Verdes , Cinética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
14.
Methods Mol Biol ; 1071: 59-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24052380

RESUMEN

Förster resonance energy transfer (FRET)-based reporters are important tools to study the spatiotemporal compartmentalization of cyclic adenosine monophosphate (cAMP) in living cells. To increase the spatial resolution of cAMP detection, new reporters with specific intracellular targeting have been developed. Therefore it has become critical to be able to appropriately compare the signals revealed by the different sensors. Here we illustrate a protocol to calibrate the response detected by different targeted FRET reporters involving the generation of a dose-response curve to the cAMP raising agent forskolin. This method represents a general tool for the accurate analysis and interpretation of intracellular cAMP changes detected at the level of different subcellular compartments.


Asunto(s)
AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Animales , Células CHO , Colforsina/metabolismo , Cricetinae , Cricetulus , Factores de Intercambio de Guanina Nucleótido/metabolismo
15.
Br J Pharmacol ; 166(2): 434-46, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22145651

RESUMEN

Life-threatening diseases of the cardiovascular system, like atherosclerosis, are exacerbated by unwanted inflammation within the structures of large blood vessels. This inflammation involves increased permeability of the vascular endothelial cells (VECs) that form the lining of blood vessels, leading to exaggerated extravasation of blood components and accumulation of fluid in the extravascular space. This results in tissue dysfunction and increased secretion of chemokines that attract leukocytes and monocytes to the inflamed endothelium. Cyclic AMP is synthesized in VECs in response to endogenous Gs-coupled receptors and is known to limit cytokine action and reduce endothelial hyperpermeability induced by multiple pro-inflammatory stimuli. The mechanisms underlying this anti-inflammatory action of cyclic AMP are now being elucidated and it is becoming clear that the cyclic AMP sensor, exchange protein activated by cyclic AMP (EPAC1), appears to play a key role in suppressing unwanted inflammation. EPAC1 mediates at least three anti-inflammatory pathways in VECs by down-regulating inflammatory signalling through the induction of the suppressors of cytokine signalling 3 (SOCS-3) gene, limiting integrin-dependent vascular permeability and enhancing endothelial barrier function through the stabilization of VE-cadherin junctions. Given that manipulation of cellular cyclic AMP levels currently forms the basis of many effective pharmaceuticals and that EPAC1 is involved in multiple anti-inflammatory protective processes in VECs, does this make EPAC1 an attractive target for the development of activators capable of eliciting a coordinated programme of 'protection' against the development of endothelial dysfunction? Here we discuss whether EPAC1 represents an attractive therapeutic target for limiting endothelial dysfunction associated with cardiovascular diseases like atherosclerosis. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Animales , AMP Cíclico/metabolismo , Humanos , Inflamación/metabolismo
16.
J Cell Biol ; 198(4): 607-21, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22908311

RESUMEN

Previous work has shown that the protein kinase A (PKA)-regulated phosphodiesterase (PDE) 4D3 binds to A kinase-anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA-PDE4D3-AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Dominio Catalítico/fisiología , Centrosoma/fisiología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Proteínas del Citoesqueleto/metabolismo , Transducción de Señal/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Animales , Células CHO , Ciclo Celular/genética , Ciclo Celular/fisiología , Cricetinae , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Proteínas del Citoesqueleto/genética , Humanos
17.
Methods Mol Biol ; 746: 297-316, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21607864

RESUMEN

Cyclic AMP governs many fundamental signaling events in eukaryotic cells. Although cAMP signaling has been a major research focus for a long time, recent technological developments are revealing novel aspects of this paradigmatic pathway. In this chapter, we give an overview over current fluorescence resonance energy transfer (FRET)-based sensors for detection of cAMP dynamics, and their application in monitoring local, compartmentalized cAMP signals within living cells. A basic step-by-step protocol is given for conducting a FRET experiment in primary cells with a unimolecular cAMP sensor, which can easily be adapted to a user's specific requirements.


Asunto(s)
Técnicas Biosensibles , AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Transducción de Señal , Células Cultivadas , Procesamiento Automatizado de Datos , Espacio Intracelular/metabolismo , Miocitos Cardíacos/metabolismo
18.
PLoS One ; 5(7): e11725, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20661441

RESUMEN

Cyclic AMP (cAMP) and its main effector Protein Kinase A (PKA) are critical for several aspects of neuronal function including synaptic plasticity. Specificity of synaptic plasticity requires that cAMP activates PKA in a highly localized manner despite the speed with which cAMP diffuses. Two mechanisms have been proposed to produce localized elevations in cAMP, known as microdomains: impeded diffusion, and high phosphodiesterase (PDE) activity. This paper investigates the mechanism of localized cAMP signaling using a computational model of the biochemical network in the HEK293 cell, which is a subset of pathways involved in PKA-dependent synaptic plasticity. This biochemical network includes cAMP production, PKA activation, and cAMP degradation by PDE activity. The model is implemented in NeuroRD: novel, computationally efficient, stochastic reaction-diffusion software, and is constrained by intracellular cAMP dynamics that were determined experimentally by real-time imaging using an Epac-based FRET sensor (H30). The model reproduces the high concentration cAMP microdomain in the submembrane region, distinct from the lower concentration of cAMP in the cytosol. Simulations further demonstrate that generation of the cAMP microdomain requires a pool of PDE4D anchored in the cytosol and also requires PKA-mediated phosphorylation of PDE4D which increases its activity. The microdomain does not require impeded diffusion of cAMP, confirming that barriers are not required for microdomains. The simulations reported here further demonstrate the utility of the new stochastic reaction-diffusion algorithm for exploring signaling pathways in spatially complex structures such as neurons.


Asunto(s)
AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Línea Celular , Biología Computacional , Simulación por Computador , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Modelos Teóricos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA