RESUMEN
During cerebellar development, granule cell progenitors (GCPs) proliferate exponentially for a fixed period, promoted by paracrine mitogenic factor Sonic Hedgehog (Shh) secreted from Purkinje cells (PCs). Dysregulation of Shh signaling leads to uncontrolled GCP proliferation and medulloblastoma. Serendipitously our previous work discovered insulin-like growth factor 1 (IGF1) as another key driver for medulloblastoma, which led to the current investigation into the role of IGF1 in GCPs during normal development. While the IGF1R conditional knockout model revealed GCP defects in anterior cerebellum, the posterior cerebellum was mostly intact, likely owing to incomplete excision of floxed alleles. To circumvent this hurdle, we enlisted a mouse genetic system called Mosaic Analysis of Double Markers (MADM), which sporadically generates homozygous null cells unequivocally labeled with GFP and their wildtype sibling cells labeled with RFP, enabling phenotypic analysis at single-cell resolution. Using MADM, we found that loss of IGF1R resulted in a 10-fold reduction of GCs in both anterior and posterior cerebellum; and that hindered S phase entry and increased cell cycle exit collectively led to this phenotype. Genetic interaction studies showed that IGF1 signaling prevents GCP cell cycle exit at least partially through suppressing the level of p27kip1, a negative regulator of cell cycle. Finally, we found that IGF1 is produced by PCs in a temporally regulated fashion: it is highly expressed early in development when GCPs proliferate exponentially, then gradually decline as GCPs commit to cell cycle exit. Taken together, our studies reveal IGF1 as a paracrine factor that positively regulates GCP cell cycle in cooperation with Shh, through dampening the level of p27 to prevent precocious cell cycle exit. Our work not only showcases the power of phenotypic analysis by the MADM system but also provides an excellent example of multi-factorial regulation of robust developmental programs.
Asunto(s)
Ciclo Celular , Comunicación Paracrina , Células de Purkinje/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Animales , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Ratones Noqueados , Células de Purkinje/citología , Receptor IGF Tipo 1/genéticaRESUMEN
Primary cilia are hair-like structures found on nearly all mammalian cell types, including cells in the developing and adult brain. A diverse set of receptors and signaling proteins localize within cilia to regulate many physiological and developmental pathways, including the Hedgehog (Hh) pathway. Defects in cilia structure, protein localization, and function lead to genetic disorders called ciliopathies, which present with various clinical features that include several neurodevelopmental phenotypes and hyperphagia-associated obesity. Despite their dysfunction being implicated in several disease states, understanding their roles in central nervous system (CNS) development and signaling has proven challenging. We hypothesize that dynamic changes to ciliary protein composition contribute to this challenge and may reflect unrecognized diversity of CNS cilia. The proteins ARL13B and ADCY3 are established markers of cilia in the brain. ARL13B is a regulatory GTPase important for regulating cilia structure, protein trafficking, and Hh signaling, and ADCY3 is a ciliary adenylyl cyclase. Here, we examine the ciliary localization of ARL13B and ADCY3 in the perinatal and adult mouse brain. We define changes in the proportion of cilia enriched for ARL13B and ADCY3 depending on brain region and age. Furthermore, we identify distinct lengths of cilia within specific brain regions of male and female mice. ARL13B+ cilia become relatively rare with age in many brain regions, including the hypothalamic feeding centers, while ADCY3 becomes a prominent cilia marker in the mature adult brain. It is important to understand the endogenous localization patterns of these proteins throughout development and under different physiological conditions as these common cilia markers may be more dynamic than initially expected. Understanding regional- and developmental-associated cilia protein composition signatures and physiological condition cilia dynamic changes in the CNS may reveal the molecular mechanisms associated with the features commonly observed in ciliopathy models and ciliopathies, like obesity and diabetes.
Asunto(s)
Ciliopatías , Proteínas Hedgehog , Animales , Femenino , Masculino , Ratones , Factores de Ribosilacion-ADP/metabolismo , Encéfalo/metabolismo , Proteínas Hedgehog/metabolismo , Mamíferos/metabolismo , ObesidadRESUMEN
Cilia are near ubiquitous small, cellular appendages critical for cell-to-cell communication. As such, they are involved in diverse developmental and homeostatic processes, including energy homeostasis. ARL13B is a regulatory GTPase highly enriched in cilia. Mice expressing an engineered ARL13B variant, ARL13BV358A which retains normal biochemical activity, display no detectable ciliary ARL13B. Surprisingly, these mice become obese. Here, we measured body weight, food intake, and blood glucose levels to reveal these mice display hyperphagia and metabolic defects. We showed that ARL13B normally localizes to cilia of neurons in specific brain regions and pancreatic cells but is excluded from these cilia in the Arl13bV358A/V358A model. In addition to its GTPase function, ARL13B acts as a guanine nucleotide exchange factor (GEF) for ARL3. To test whether ARL13B's GEF activity is required to regulate body weight, we analyzed the body weight of mice expressing ARL13BR79Q, a variant that lacks ARL13B GEF activity for ARL3. We found no difference in body weight. Taken together, our results show that ARL13B functions within cilia to control body weight and that this function does not depend on its role as a GEF for ARL3. Controlling the subcellular localization of ARL13B in the engineered mouse model, ARL13BV358A, enables us to define the cilia-specific role of ARL13B in regulating energy homeostasis.