Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cells ; 12(10)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37408252

RESUMEN

The Neurovascular Unit (NVU), composed of glia (astrocytes, oligodendrocytes, microglia), neurons, pericytes and endothelial cells, is a dynamic interface ensuring the physiological functioning of the central nervous system (CNS), which gets affected and contributes to the pathology of several neurodegenerative diseases. Neuroinflammation is a common feature of neurodegenerative diseases and is primarily related to the activation state of perivascular microglia and astrocytes, which constitute two of its major cellular components. Our studies focus on monitoring in real time the morphological changes of perivascular astrocytes and microglia, as well as their dynamic interactions with the brain vasculature, under physiological conditions and following systemic neuroinflammation triggering both microgliosis and astrogliosis. To this end, we performed 2-photon laser scanning microscopy (2P-LSM) for intravital imaging of the cortex of transgenic mice visualizing the dynamics of microglia and astroglia following neuroinflammation induced by systemic administration of the endotoxin lipopolysaccharide (LPS). Our results indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, an event that most possibly contributes to a loss of blood-brain barrier (BBB) integrity. At the same time, microglial cells become activated and exhibit a higher extent of physical contact with the blood vessels. These dynamic responses of perivascular astrocytes and microglia are peaking at 4 days following LPS administration; however, they still persist at a lower level at 8 days after LPS injection, revealing incomplete reversal of inflammation affecting the glial properties and interactions within the NVU.


Asunto(s)
Astrocitos , Microglía , Animales , Ratones , Astrocitos/patología , Microglía/patología , Lipopolisacáridos/efectos adversos , Enfermedades Neuroinflamatorias , Células Endoteliales/patología , Encéfalo/patología , Inflamación/patología , Ratones Transgénicos
2.
Stem Cell Reports ; 18(4): 915-935, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36963393

RESUMEN

The microRNA (miRNA) miR-124 has been employed supplementary to neurogenic transcription factors (TFs) and other miRNAs to enhance direct neurogenic conversion. The aim of this study was to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced neurons (iNs) on its own and elucidate its independent mechanism of reprogramming action. Our data show that miR-124 is a potent driver of the reprogramming switch of astrocytes toward an immature neuronal fate by directly targeting the RNA-binding protein Zfp36L1 implicated in ARE-mediated mRNA decay and subsequently derepressing Zfp36L1 neurogenic interactome. To this end, miR-124 contribution in iNs' production largely recapitulates endogenous neurogenesis pathways, being further enhanced upon addition of the neurogenic compound ISX9, which greatly improves iNs' differentiation and functional maturation. Importantly, miR-124 is potent in guiding direct conversion of reactive astrocytes to immature iNs in vivo following cortical trauma, while ISX9 supplementation confers a survival advantage to newly produced iNs.


Asunto(s)
MicroARNs , Células-Madre Neurales , Astrocitos/metabolismo , Neuronas/metabolismo , Diferenciación Celular/genética , Células-Madre Neurales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA