Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 144: 107136, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38271823

RESUMEN

Two innovative series derived from nicotinic acid scaffold were synthesized and evaluated for their anti-inflammatory activity. Ibuprofen, celecoxib and indomethacin were used as standard drugs. All the newly synthesized compounds were in vitro screened for their anti-inflammatory activity adopting 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide dye (MTT), as well as Griess assays. The results showed that all compounds exhibited significant anti-inflammatory activity without affecting the viability of the macrophages compared to ibuprofen. In addition, compounds 4d, 4f, 4g, 4h and 5b exhibited the most potent nitrite inhibition activity and consequently superior anti-inflammatory activity with MTT results ranging between values 86.109 ± 0.51 to 119.084 ± 0.09. The most active compounds were subjected to evaluation of TNF-α, IL-6, iNOS and COX-2 levels in LPS/INF γ-stimulated RAW 264.7 macrophage cells in comparison to ibuprofen as a reference compound. The five compounds showed comparable inhibition potency of these inflammatory cytokines compared to ibuprofen. Same compounds were further in vivo evaluated for their anti-inflammatory activity via carrageenan induced arthritis in rats. Regarding the ulcerogenic profile, compound 4h showed mild infiltration of gastric mucosa superb to compound 5b displayed severe gastritis. Molecular docking of 4h and 5b in the COX-2 active site was performed to evaluate their preferential COX-2 inhibitory potency. The docking results were in accordance with the biological findings.


Asunto(s)
Ibuprofeno , Niacina , Ratas , Animales , Ibuprofeno/farmacología , Ibuprofeno/uso terapéutico , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de la Ciclooxigenasa 2 , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Antiinflamatorios no Esteroideos/química , Relación Estructura-Actividad
2.
RSC Adv ; 14(42): 30647-30661, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39324041

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most abundantly used classes among therapeutic agents in medicine. NSAIDs inhibit the enzyme cyclooxygenase (COX), which is responsible for the conversion of arachidonic acid to prostaglandins. Meanwhile, non-selective NSAIDs are considered as a double-edged weapon since inhibition of COX-1 can lead to gastrointestinal side effects and kidney damage, whereas selective COX-2 inhibition provides anti-inflammatory effects without gastrointestinal toxicity. The detection of COX-2 role in inflammation process launched a new era in its management. Several trials have been established to proceed towards selectivity of well-defined anti-inflammatory members. COX-2 selective inhibitors are evidently safer on the gastrointestinal tract than non-selective NSAIDs. Nevertheless, their unexpected cardiovascular risks cannot be ignored. This review article highlights the latest trials aimed at developing new compounds with promising selective COX-2 activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA