RESUMEN
Metastatic disease is a primary cause of cancer-related death, and factors governing tumor cell metastasis have not been fully elucidated. Here, we address this question by using tumor cell lines derived from mice that develop metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. Despite having widespread somatic genetic alterations, the metastasis-prone tumor cells retained a marked plasticity. They transited reversibly between epithelial and mesenchymal states, forming highly polarized epithelial spheres in three-dimensional culture that underwent epithelial-to-mesenchymal transition (EMT) following treatment with transforming growth factor-beta or injection into syngeneic mice. This transition was entirely dependent on the microRNA (miR)-200 family, which decreased during EMT. Forced expression of miR-200 abrogated the capacity of these tumor cells to undergo EMT, invade, and metastasize, and conferred transcriptional features of metastasis-incompetent tumor cells. We conclude that tumor cell metastasis is regulated by miR-200 expression, which changes in response to contextual extracellular cues.
Asunto(s)
Espacio Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia/fisiopatología , Adenocarcinoma/fisiopatología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Perfilación de la Expresión Génica , Neoplasias Pulmonares/fisiopatología , Ratones , Factor de Crecimiento Transformador beta/farmacologíaRESUMEN
Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.
Asunto(s)
Adenocarcinoma/enzimología , Carcinoma de Células Escamosas/enzimología , Colágeno/metabolismo , Neoplasias Pulmonares/enzimología , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/fisiología , Adenocarcinoma/mortalidad , Adenocarcinoma/secundario , Animales , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/secundario , Línea Celular Tumoral , Células Cultivadas , Inducción Enzimática , Matriz Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Ratones de la Cepa 129 , Ratones Transgénicos , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Factor de Transcripción STAT3/metabolismo , Microambiente Tumoral , Regulación hacia ArribaRESUMEN
Epithelial tumor cells that have undergone epithelial-to-mesenchymal transition (EMT) are typically prone to metastasis and drug resistance and contribute to a poor clinical outcome. The transcription factor ZEB1 is a known driver of EMT, and mediators of ZEB1 represent potential therapeutic targets for metastasis suppression. Here, we have shown that phosphatidylinositol 3-kinase-targeted (PI3K-targeted) therapy suppresses metastasis in a mouse model of Kras/Tp53-mutant lung adenocarcinoma that develops metastatic disease due to high expression of ZEB1. In lung adenocarcinoma cells from Kras/Tp53-mutant animals and human lung cancer cell lines, ZEB1 activated PI3K by derepressing miR-200 targets, including amphiregulin (AREG), betacellulin (BTC), and the transcription factor GATA6, which stimulated an EGFR/ERBB2 autocrine loop. Additionally, ZEB1-dependent derepression of the miR-200 and miR-183 target friend of GATA 2 (FOG2) enhanced GATA3-induced expression of the p110α catalytic subunit of PI3K. Knockdown of FOG2, p110α, and RHEB ameliorated invasive and metastatic propensities of tumor cells. Surprisingly, FOG2 was not required for mesenchymal differentiation, suggesting that mesenchymal differentiation and invasion are distinct and separable processes. Together, these results indicate that ZEB1 sensitizes lung adenocarcinoma cells to metastasis suppression by PI3K-targeted therapy and suggest that treatments to selectively modify the metastatic behavior of mesenchymal tumor cells are feasible and may be of clinical value.
Asunto(s)
Adenocarcinoma/metabolismo , Adenocarcinoma/secundario , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Inhibidores de las Quinasa Fosfoinosítidos-3 , Factores de Transcripción/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma del Pulmón , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Transición Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes p53 , Gonanos/farmacología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Mutación , Metástasis de la Neoplasia/prevención & control , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptor ErbB-2/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de ZincRESUMEN
The extracellular matrix of epithelial tumors undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How matrix integrity is maintained in the face of dynamic biophysical forces is largely undefined. Here we investigated the role of fibulin-2, a matrix glycoprotein that functions biomechanically as an inter-molecular clasp and thereby facilitates supra-molecular assembly. Fibulin-2 was abundant in the extracellular matrix of human lung adenocarcinomas and was highly expressed in tumor cell lines derived from mice that develop metastatic lung adenocarcinoma from co-expression of mutant K-ras and p53. Loss-of-function experiments in tumor cells revealed that fibulin-2 was required for tumor cells to grow and metastasize in syngeneic mice, a surprising finding given that other intra-tumoral cell types are known to secrete fibulin-2. However, tumor cells grew and metastasized equally well in Fbln2-null and -wild-type littermates, implying that malignant progression was dependent specifically upon tumor cell-derived fibulin-2, which could not be offset by other cellular sources of fibulin-2. Fibulin-2 deficiency impaired the ability of tumor cells to migrate and invade in Boyden chambers, to create a stiff extracellular matrix in mice, to cross-link secreted collagen, and to adhere to collagen. We conclude that fibulin-2 is a driver of malignant progression in lung adenocarcinoma and plays an unexpected role in collagen cross-linking and tumor cell adherence to collagen.
Asunto(s)
Adenocarcinoma/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Animales , Western Blotting , Proteínas de Unión al Calcio/genética , Adhesión Celular/genética , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Proteínas de la Matriz Extracelular/genética , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/genética , Ratones , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
The microRNA-200 (miR-200) family is part of a gene expression signature that predicts poor prognosis in lung cancer patients. In a mouse model of K-ras/p53-mutant lung adenocarcinoma, miR-200 levels are suppressed in metastasis-prone tumor cells, and forced miR-200 expression inhibits tumor growth and metastasis, but the miR-200 target genes that drive lung tumorigenesis have not been fully elucidated. Here, we scanned the genome for putative miR-200 binding sites and found them in the 3'-untranslated region (3'-UTR) of 35 genes that are amplified in human cancer. Mining of a database of resected human lung adenocarcinomas revealed that the levels of one of these genes, Flt1/VEGFR1, correlate inversely with duration of survival. Forced miR-200 expression suppressed Flt1 levels in metastasis-prone lung adenocarcinoma cells derived from K-ras/p53-mutant mice, and negatively regulated the Flt1 3'-UTR in reporter assays. Cancer-associated fibroblasts (CAFs) isolated from murine lung adenocarcinomas secreted abundant VEGF and enhanced tumor cell invasion in coculture studies. CAF-induced tumor cell invasion was abrogated by VEGF neutralization or Flt1 knockdown in tumor cells. Flt1 knockdown decreased the growth and metastasis of tumor cells in syngeneic mice. We conclude that miR-200 suppresses lung tumorigenesis by targeting Flt1.
Asunto(s)
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Regiones no Traducidas 3'/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Sitios de Unión/genética , Línea Celular Tumoral , Movimiento Celular/genética , Células Cultivadas , Técnicas de Cocultivo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Microscopía Fluorescente , Invasividad Neoplásica , Metástasis de la Neoplasia , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
MAP2K4 encodes a dual-specificity kinase (mitogen-activated protein kinase kinase 4, or MKK4) that is mutated in a variety of human malignancies, but the biochemical properties of the mutant kinases and their roles in tumorigenesis have not been fully elucidated. Here we showed that 8 out of 11 cancer-associated MAP2K4 mutations reduce MKK4 protein stability or impair its kinase activity. On the basis of findings from bioinformatic studies on human cancer cell lines with homozygous MAP2K4 loss, we posited that MKK4 functions as a tumor suppressor in lung adenocarcinomas that develop in mice owing to expression of mutant Kras and Tp53. Conditional Map2k4 inactivation in the bronchial epithelium of mice had no discernible effect alone but increased the multiplicity and accelerated the growth of incipient lung neoplasias induced by oncogenic Kras. MKK4 suppressed the invasion and metastasis of Kras-Tp53-mutant lung adenocarcinoma cells. MKK4 deficiency increased peroxisomal proliferator-activated receptor γ2 (PPARγ2) expression through noncanonical MKK4 substrates, and PPARγ2 enhanced tumor cell invasion. We conclude that Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing PPARγ2 levels.
Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias Pulmonares/metabolismo , MAP Quinasa Quinasa 4/metabolismo , PPAR gamma/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular Tumoral , Cartilla de ADN/genética , Estabilidad de Enzimas , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MAP Quinasa Quinasa 4/química , MAP Quinasa Quinasa 4/genética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Invasividad Neoplásica , Homología de Secuencia de Aminoácido , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Epithelial tumor cells transit to a mesenchymal state in response to extracellular cues, in a process known as epithelial-to-mesenchymal transition (EMT). The precise nature of these cues has not been fully defined, an important issue given that EMT is an early event in tumor metastasis. Here, we have found that a population of metastasis-prone mouse lung adenocarcinoma cells expresses Notch and Notch ligands and that the Notch ligand Jagged2 promotes metastasis. Mechanistically, Jagged2 was found to promote metastasis by increasing the expression of GATA-binding (Gata) factors, which suppressed expression of the microRNA-200 (miR-200) family of microRNAs that target the transcriptional repressors that drive EMT and thereby induced EMT. Reciprocally, miR-200 inhibited expression of Gata3, which reversed EMT and abrogated metastasis, suggesting that Gata3 and miR-200 are mutually inhibitory and have opposing effects on EMT and metastasis. Consistent with this, high levels of Gata3 expression correlated with EMT in primary tumors from 2 cohorts of lung adenocarcinoma patients. These findings reveal what we believe to be a novel Jagged2/miR-200-dependent pathway that mediates lung adenocarcinoma EMT and metastasis in mice and may have implications for the treatment of human epithelial tumors.
Asunto(s)
Adenocarcinoma/metabolismo , Adenocarcinoma/secundario , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Receptores Notch/metabolismo , Antígeno AC133 , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Antígenos CD/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Perfilación de la Expresión Génica , Glicoproteínas/metabolismo , Humanos , Proteína Jagged-2 , Ligandos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de la Membrana/genética , Ratones , Ratones de la Cepa 129 , MicroARNs/genética , Péptidos/metabolismo , Transducción de SeñalRESUMEN
Phosphatase and tensin homologue deleted from chromosome 10 (Pten) is expressed aberrantly in non-small cell lung cancer cells, but the role of Pten in lung neoplasia has not been fully elucidated. In this study, we used a genetic approach to inactivate Pten in the bronchial epithelium of mice. Although, by itself, Pten inactivation had no discernible effect on bronchial epithelial histology, it accelerated lung tumorigenesis initiated by oncogenic K-ras, causing more rapid lethality than that induced by oncogenic K-ras alone (8 weeks versus 24 weeks of median duration of survival, respectively). Lung tumors arose in K-ras mutant, Pten-deficient mice that rapidly obstructed bronchial lumina and replaced alveolar spaces. Relative to K-ras mutant tumors, the K-ras mutant, Pten-deficient tumors exhibited more advanced histologic severity and more prominent inflammation and vascularity. Thus, Pten inactivation cooperated with oncogenic K-ras in promoting lung tumorigenesis.
Asunto(s)
Transformación Celular Neoplásica/genética , Genes ras , Neoplasias Pulmonares/genética , Fosfohidrolasa PTEN/genética , Adenocarcinoma Bronquioloalveolar/irrigación sanguínea , Adenocarcinoma Bronquioloalveolar/genética , Adenocarcinoma Bronquioloalveolar/metabolismo , Adenocarcinoma Bronquioloalveolar/patología , Alelos , Animales , Transformación Celular Neoplásica/metabolismo , Quimiocinas/biosíntesis , Quimiocinas/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/genética , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Fosfohidrolasa PTEN/biosíntesis , Fosfohidrolasa PTEN/deficiencia , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de SeñalRESUMEN
The role of Src-family kinases (SFKs) in non-small cell lung cancer (NSCLC) has not been fully defined. Here we addressed this question by examining SFK phosphorylation in NSCLC biopsy samples and using genetic and pharmacological approaches to inhibit SFK expression and activity in cultured NSCLC cells. Immunohistochemical analysis of NSCLC biopsy samples using a Tyr416 phosphorylation-specific, pan-SFK antibody revealed staining in 123 (33%) of 370 tumors. Because c-Src is known to be both an upstream activator and downstream mediator of epidermal growth factor receptor (EGFR), we next investigated SFK phosphorylation in a panel of NSCLC cell lines, including ones that depend on EGFR for survival. The EGFR-dependent NSCLC cell lines HCC827 and H3255 had increased phosphorylation of SFKs, and treatment of these cells with an SFK inhibitor (PP1 or SKI-606) induced apoptosis. PP1 decreased phosphorylation of EGFR, ErbB2, and ErbB3 and strikingly enhanced apoptosis by gefitinib, an EGFR inhibitor. HCC827 cells transfected with c-Src short hairpin RNA exhibited diminished phosphorylation of EGFR and ErbB2 and decreased sensitivity to apoptosis by PP1 or gefitinib. We conclude that SFKs are activated in NSCLC biopsy samples, promote the survival of EGFR-dependent NSCLC cells, and should be investigated as therapeutic targets in NSCLC patients.