RESUMEN
Central metabolic pathways control virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to ß-lactam antibiotics, particularly in chemically defined media with physiologically-relevant concentrations of glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased ß-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. The pgl mutation reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Levels of lipoteichoic acids (LTAs) were significantly reduced in pgl, which may limit cell lysis, while the surface charge of pgl cells was significantly more positive. A vraG mutation in pgl reversed the increased OX resistance phenotype, and partially restored wild-type surface charge, but not LTA levels. Mutations in vraF or graRS from the VraFG/GraRS complex that regulates DltABCD-mediated d-alanylation of teichoic acids (which in turn controls ß-lactam resistance and surface charge), also restored wild-type OX susceptibility. Collectively these data show that reduced levels of LTAs and OX-induced lysis combined with a VraFG/GraRS-dependent increase in cell surface positive charge are accompanied by significantly increased OX resistance in an MRSA pgl mutant.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Vía de Pentosa Fosfato/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Oxacilina/farmacología , Pared Celular/metabolismo , Monobactamas/metabolismo , Resistencia betalactámica/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad MicrobianaRESUMEN
Genome sequencing has demonstrated that Staphylococcus aureus encodes arginine biosynthetic genes argDCJBFGH synthesizing proteins that mediate arginine biosynthesis using glutamate as a substrate. Paradoxically, however, S. aureus does not grow in a defined, glutamate-replete medium lacking arginine and glucose (CDM-R). Studies from our laboratory have found that specific mutations are selected by S. aureus that facilitate growth in CDM-R. However, these selected mutants synthesize arginine utilizing proline as a substrate rather than glutamate. In this study, we demonstrate that the ectopic expression of the argDCJB operon supports the growth of S. aureus in CDM-R, thus documenting the functionality of this pathway. Furthermore, suppressor mutants of S. aureus JE2 putA::Tn, which is defective in synthesizing arginine from proline, were selected on CDM-R agar. Genome sequencing revealed that these mutants had compensatory mutations within both spoVG, encoding an ortholog of the Bacillus subtilis stage V sporulation protein, and sarA, encoding the staphylococcal accessory regulator. Transcriptional studies document that argD expression is significantly increased when JE2 spoVG sarA was grown in CDM-R. Lastly, we found that a mutation in ahrC was required to induce argD expression in JE2 spoVG sarA when grown in an arginine-replete medium (CDM), suggesting that AhrC also functions to repress argDCJB in an arginine-dependent manner. In conclusion, these data indicate that the argDCJB operon is functional when transcribed in vitro and that SNPs within potential putative regulatory proteins are required to alleviate the repression.IMPORTANCEAlthough Staphylococcus aureus has the capability to synthesize all 20 amino acids, it is phenotypically auxotrophic for several amino acids including arginine. This work identifies putative regulatory proteins, including SpoVG, SarA, and AhrC, that function to inhibit the arginine biosynthetic pathways using glutamate as a substrate. Understanding the ultimate mechanisms of why S. aureus is selected to repress arginine biosynthetic pathways even in the absence of arginine will add to the growing body of work assessing the interactions between metabolism and S. aureus pathogenesis.
Asunto(s)
Ácido Glutámico , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Ácido Glutámico/metabolismo , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Factores de Transcripción/metabolismo , Aminoácidos/metabolismo , Prolina/genética , Prolina/metabolismo , Regulación Bacteriana de la Expresión GénicaRESUMEN
Staphylococcus aureus is a leading cause of medical device-associated biofilm infections. This is influenced by the ability of S. aureus biofilm to evade the host immune response, which is partially driven by the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that treatment of human monocyte-derived macrophages (HMDMs) with IL-10 enhanced biofilm formation, suggesting that macrophage anti-inflammatory programming likely plays an important role during the transition from planktonic to biofilm growth. To identify S. aureus genes that were important for intracellular survival in HMDMs and how this was affected by IL-10, transposon sequencing was performed. The size of the S. aureus essential genome was similar between unstimulated HMDMs and the outgrowth control (18.5% vs 18.4%, respectively, with 54.4% overlap) but increased to 22.5% in IL-10-treated macrophages, suggesting that macrophage polarization status exerts differential pressure on S. aureus. Essential genes for S. aureus survival within IL-10-polarized HMDMs were dominated by negative regulatory pathways, including nitrogen and RNA metabolism, whereas S. aureus essential genes within untreated HMDMs were enriched in biosynthetic pathways such as purine and pyrimidine biosynthesis. To explore how IL-10 altered the macrophage intracellular metabolome, targeted metabolomics was performed on HMDMs from six individual donors. IL-10 treatment led to conserved alterations in distinct metabolites that were increased (dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, and acetyl-CoA) or reduced (fructose-6-phosphate, aspartic acid, and ornithine) across donors, whereas other metabolites were variable. Collectively, these findings highlight an important aspect of population-level heterogeneity in human macrophage responsiveness that should be considered when translating results to a patient population.IMPORTANCEOne mechanism that Staphylococcus aureus biofilm elicits in the host to facilitate infection persistence is the production of the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that exposure of human monocyte-derived macrophages (HMDMs) to IL-10 promotes S. aureus biofilm formation and programs intracellular bacteria to favor catabolic pathways. Examination of intracellular metabolites in HMDMs revealed heterogeneity between donors that may explain the observed variability in essential genes for S. aureus survival based on nutrient availability for bacteria within the intracellular compartment. Collectively, these studies provide novel insights into how IL-10 polarization affects S. aureus intracellular survival in HMDMs and the importance of considering macrophage heterogeneity between human donors as a variable when examining effector mechanisms.
Asunto(s)
Interleucina-10 , Infecciones Estafilocócicas , Humanos , Interleucina-10/genética , Staphylococcus aureus/metabolismo , Macrófagos , Citocinas/metabolismo , Antiinflamatorios , Infecciones Estafilocócicas/microbiología , BiopelículasRESUMEN
The transition from growth to stationary phase is a natural response of bacteria to starvation and stress. When stress is alleviated and more favorable growth conditions return, bacteria resume proliferation without a significant loss in fitness. Although specific adaptations that enhance the persistence and survival of bacteria in stationary phase have been identified, mechanisms that help maintain the competitive fitness potential of nondividing bacterial populations have remained obscure. Here, we demonstrate that staphylococci that enter stationary phase following growth in media supplemented with excess glucose, undergo regulated cell death to maintain the competitive fitness potential of the population. Upon a decrease in extracellular pH, the acetate generated as a byproduct of glucose metabolism induces cytoplasmic acidification and extensive protein damage in nondividing cells. Although cell death ensues, it does not occur as a passive consequence of protein damage. Instead, we demonstrate that the expression and activity of the ClpXP protease is induced, resulting in the degeneration of cellular antioxidant capacity and, ultimately, cell death. Under these conditions, inactivation of either clpX or clpP resulted in the extended survival of unfit cells in stationary phase, but at the cost of maintaining population fitness. Finally, we show that cell death from antibiotics that interfere with bacterial protein synthesis can also be partly ascribed to the corresponding increase in clpP expression and activity. The functional conservation of ClpP in eukaryotes and bacteria suggests that ClpP-dependent cell death and fitness maintenance may be a widespread phenomenon in these domains of life.
Asunto(s)
Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Staphylococcus aureus/enzimología , Ácido Acético , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/genética , Muerte Celular , Endopeptidasa Clp/genética , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Staphylococcus aureus/genéticaRESUMEN
Staphylococcus aureus is a medically important pathogen with high metabolic versatility allowing it to infect various niches within a host. S. aureus utilizes two major transcriptional regulators, namely, CodY and CcpA, to remodel metabolic and virulence gene expression in response to changing environmental conditions. Previous studies revealed that inactivation of either codY or ccpA has a pronounced impact on different aspects of staphylococcal physiology and pathogenesis. To determine the contribution and interplay of these two regulators in modulating central metabolism, virulence, and biofilm development, we constructed and characterized the codY ccpA double mutant in S. aureus UAMS-1. In line with previous studies, we found that CcpA and CodY control the cellular metabolic status by altering carbon flux through the central and overflow metabolic pathways. Our results demonstrate that ccpA inactivation impairs biofilm formation and decreases incorporation of extracellular DNA (eDNA) into the biofilm matrix, whereas disrupting codY resulted in a robust structured biofilm tethered together with eDNA and polysaccharide intercellular adhesin (PIA). Interestingly, inactivation of both codY and ccpA decreases biofilm biomass and reduces eDNA release in the double mutant. Compared with the inactivation of codY, the codY ccpA mutant did not overexpress toxins but maintained overexpression of amino acid metabolism pathways. Furthermore, the codY ccpA mutant produced large amounts of PIA, in contrast to the wild-type strain and ccpA mutant. Combined, the results of this study suggest that the coordinated action of CodY and CcpA modulate central metabolism, virulence gene expression, and biofilm-associated genes to optimize growth on preferred carbon sources until starvation sets in. IMPORTANCE Staphylococcus aureus is a leading cause of biofilm-associated infections, including infective endocarditis, worldwide. A greater understanding of metabolic forces driving biofilm formation in S. aureus is essential for the identification of novel therapeutic targets and for the development of new strategies to combat this medically important pathogen. This study characterizes the interplay and regulation of central metabolism and biofilm development by two global transcriptional regulators, CodY and CcpA. We found that the lack of CcpA and/or CodY have different impacts on intracellular metabolic status leading to a formation of morphologically altered biofilms. Overall, the results of this study provide new insights into our understanding of metabolism-mediated regulation of biofilm development in S. aureus.
Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Regulación Bacteriana de la Expresión Génica , Humanos , Staphylococcus aureus/metabolismoRESUMEN
Biofilms are bacterial communities characterized by antibiotic tolerance. Staphylococcus aureus is a leading cause of biofilm infections on medical devices, including prosthetic joints, which represent a significant health care burden. The major leukocyte infiltrate associated with S. aureus prosthetic joint infection (PJI) is granulocytic myeloid-derived suppressor cells (G-MDSCs), which produce IL-10 to promote biofilm persistence by inhibiting monocyte and macrophage proinflammatory activity. To determine how S. aureus biofilm responds to G-MDSCs and macrophages, biofilms were cocultured with either leukocyte population followed by RNA sequencing. Several genes involved in fermentative pathways were significantly upregulated in S. aureus biofilm following G-MDSC coculture, including formate acetyltransferase (pflB), which catalyzes the conversion of pyruvate and coenzyme-A into formate and acetyl-CoA. A S. aureus pflB mutant (ΔpflB) did not exhibit growth defects in vitro. However, ΔpflB formed taller and more diffuse biofilm compared to the wild-type strain as revealed by confocal microscopy. In a mouse model of PJI, the bacterial burden was significantly reduced with ΔpflB during later stages of infection, which coincided with decreased G-MDSC influx and increased neutrophil recruitment, and ΔpflB was more susceptible to macrophage killing. Although formate was significantly reduced in the soft tissue surrounding the joint of ΔpflB-infected mice levels were increased in the femur, suggesting that host-derived formate may also influence bacterial survival. This was supported by the finding that a ΔpflBΔfdh strain defective in formate production and catabolism displayed a similar phenotype to ΔpflB. These results revealed that S. aureus formate metabolism is important for promoting biofilm persistence.
Asunto(s)
Artritis Infecciosa , Infecciones Estafilocócicas , Ratones , Animales , Staphylococcus aureus , Infecciones Estafilocócicas/microbiología , Biopelículas , Monocitos/metabolismo , Artritis Infecciosa/metabolismo , Formiatos/metabolismoRESUMEN
A Staphylococcus aureus strain deleted for the c-di-AMP cyclase gene dacA is unable to survive in rich medium unless it acquires compensatory mutations. Previously identified mutations were in opuD, encoding the main glycine-betaine transporter, and alsT, encoding a predicted amino acid transporter. Here, we show that inactivation of OpuD restores the cell size of a dacA mutant to near wild-type (WT) size, while inactivation of AlsT does not. AlsT was identified as an efficient glutamine transporter, indicating that preventing glutamine uptake in rich medium rescues the growth of the S. aureus dacA mutant. In addition, GltS was identified as a glutamate transporter. By performing growth curves with WT, alsT and gltS mutant strains in defined medium supplemented with ammonium, glutamine or glutamate, we revealed that ammonium and glutamine, but not glutamate promote the growth of S. aureus. This suggests that besides ammonium also glutamine can serve as a nitrogen source under these conditions. Ammonium and uptake of glutamine via AlsT and hence likely a higher intracellular glutamine concentration inhibited c-di-AMP production, while glutamate uptake had no effect. These findings provide, besides the previously reported link between potassium and osmolyte uptake, a connection between nitrogen metabolism and c-di-AMP signalling in S. aureus.
Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Proteínas Portadoras/metabolismo , AMP Cíclico/metabolismo , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Compuestos de Amonio/metabolismo , Metabolismo Energético/genética , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Staphylococcus aureus/genéticaRESUMEN
Staphylococcus aureus causes acute and chronic infections resulting in significant morbidity. Urease, an enzyme that generates NH3 and CO2 from urea, is key to pH homeostasis in bacterial pathogens under acidic stress and nitrogen limitation. However, the function of urease in S. aureus niche colonization and nitrogen metabolism has not been extensively studied. We discovered that urease is essential for pH homeostasis and viability in urea-rich environments under weak acid stress. The regulation of urease transcription by CcpA, Agr, and CodY was identified in this study, implying a complex network that controls urease expression in response to changes in metabolic flux. In addition, it was determined that the endogenous urea derived from arginine is not a significant contributor to the intracellular nitrogen pool in non-acidic conditions. Furthermore, we found that during a murine chronic renal infection, urease facilitates S. aureus persistence by promoting bacterial fitness in the low-pH, urea-rich kidney. Overall, our study establishes that urease in S. aureus is not only a primary component of the acid response network but also an important factor required for persistent murine renal infections.
Asunto(s)
Staphylococcus aureus/metabolismo , Ureasa/metabolismo , Ureasa/fisiología , Ácidos/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Femenino , Homeostasis/fisiología , Concentración de Iones de Hidrógeno , Riñón/microbiología , Enfermedades Renales/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrógeno/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidad , Urea/metabolismo , Ureasa/genéticaRESUMEN
The death and lysis of a subpopulation of Staphylococcus aureus cells during biofilm development benefit the whole bacterial population through the release of an important component of the biofilm matrix, extracellular DNA. Previously, we have demonstrated that these processes are affected by the gene products of the cidABC operon, the expression of which is controlled by the LysR-type transcriptional regulator, CidR. In this study, we characterized cis- and trans-acting elements essential for the induction of the cidABC operon. In addition to a CidR-binding site located within the cidABC promoter region, sequence analysis revealed the presence of a putative catabolite responsive element (cre box), suggestive of the involvement of the catabolite control protein A (CcpA) in the regulation of cidABC expression. This was confirmed using electrophoretic mobility shift assays and real-time reverse transcriptase PCR analysis demonstrating the direct positive control of cidABC transcription by the master regulator of carbon metabolism. Furthermore, the importance of CcpA and the identified cre site for the induction of the cidABC operon was demonstrated by examining the expression of P cidABC-lacZ reporter fusions in various mutant strains in which the genes involved in carbon metabolism and carbon catabolite repression were disrupted. Together the results of this study demonstrate the necessity of both transcriptional regulators, CidR and CcpA, for the induction of the cidABC operon and reveal the complexity of molecular interactions controlling its expression.IMPORTANCE This work focuses on the characterization of cis- and trans-acting elements essential for the induction of the cidABC operon in S. aureus The results of this study are the first to demonstrate the synergistic control of cidABC expression by transcriptional regulators CidR and CcpA during carbohydrate metabolism. We established that the full induction of cidABC expression depends on the metabolic state of bacteria and requires both CidR and CcpA. Together, these findings delineate regulatory control of cidABC expression under different metabolic conditions and provide important new insights into our understanding of cell death mechanisms during biofilm development in S. aureus.
Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Biopelículas/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Genes Reporteros , Operón , Regiones Promotoras Genéticas , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Staphylococcus aureus/metabolismo , Transcripción GenéticaRESUMEN
Staphylococcus aureus is a major human pathogen of the skin. The global burden of diabetes is high, with S. aureus being a major complication of diabetic wound infections. We investigated how the diabetic environment influences S. aureus skin infection and observed an increased susceptibility to infection in mouse models of both type I and type II diabetes. A dual gene expression approach was taken to investigate transcriptional alterations in both the host and bacterium after infection. While analysis of the host response revealed only minor changes between infected control and diabetic mice, we observed that S. aureus isolated from diabetic mice had significant increases in the levels of genes associated with translation and posttranslational modification and chaperones and reductions in the levels of genes associated with amino acid transport and metabolism. One family of genes upregulated in S. aureus isolated from diabetic lesions encoded the Clp proteases, associated with the misfolded protein response. The Clp proteases were found to be partially glucose regulated as well as influencing the hemolytic activity of S. aureus Strains lacking the Clp proteases ClpX, ClpC, and ClpP were significantly attenuated in our animal model of skin infection, with significant reductions observed in dermonecrosis and bacterial burden. In particular, mutations in clpP and clpX were significantly attenuated and remained attenuated in both normal and diabetic mice. Our data suggest that the diabetic environment also causes changes to occur in invading pathogens, and one of these virulence determinants is the Clp protease system.
Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Virulencia/genética , Virulencia/inmunología , Animales , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno/inmunología , Humanos , RatonesRESUMEN
The Staphylococcus aureus LysR-type transcriptional regulator, CidR, activates the expression of two operons including cidABC and alsSD that display pro- and anti-death functions, respectively. Although several investigations have focused on the functions of different genes associated with these operons, the collective role of the CidR regulon in staphylococcal physiology is not clearly understood. Here we reveal that the primary role of this regulon is to limit acetate-dependent potentiation of cell death in staphylococcal populations. Although both CidB and CidC promote acetate generation and cell death, the CidR-dependent co-activation of CidA and AlsSD counters the effects of CidBC by redirecting intracellular carbon flux towards acetoin formation. From a mechanistic standpoint, we demonstrate that CidB is necessary for full activation of CidC, whereas CidA limits the abundance of CidC in the cell.
Asunto(s)
Proteínas Bacterianas/genética , Staphylococcus aureus/citología , Staphylococcus aureus/genética , Factores de Transcripción/genética , Proteínas Bacterianas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Operón , Elementos Reguladores de la Transcripción , Regulón , Staphylococcus aureus/metabolismo , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
UNLABELLED: The death and lysis of a subpopulation in Staphylococcus aureus biofilm cells are thought to benefit the surviving population by releasing extracellular DNA, a critical component of the biofilm extracellular matrix. Although the means by which S. aureus controls cell death and lysis is not understood, studies implicate the role of the cidABC and lrgAB operons in this process. Recently, disruption of the srrAB regulatory locus was found to cause increased cell death during biofilm development, likely as a result of the sensitivity of this mutant to hypoxic growth. In the current study, we extended these findings by demonstrating that cell death in the ΔsrrAB mutant is dependent on expression of the cidABC operon. The effect of cidABC expression resulted in the generation of increased reactive oxygen species (ROS) accumulation and was independent of acetate production. Interestingly, consistently with previous studies, cidC-encoded pyruvate oxidase was found to be important for the generation of acetic acid, which initiates the cell death process. However, these studies also revealed for the first time an important role of the cidB gene in cell death, as disruption of cidB in the ΔsrrAB mutant background decreased ROS generation and cell death in a cidC-independent manner. The cidB mutation also caused decreased sensitivity to hydrogen peroxide, which suggests a complex role for this system in ROS metabolism. Overall, the results of this study provide further insight into the function of the cidABC operon in cell death and reveal its contribution to the oxidative stress response. IMPORTANCE: The manuscript focuses on cell death mechanisms in Staphylococcus aureus and provides important new insights into the genes involved in this ill-defined process. By exploring the cause of increased stationary-phase death in an S. aureus ΔsrrAB regulatory mutant, we found that the decreased viability of this mutant was a consequence of the overexpression of the cidABC operon, previously shown to be a key mediator of cell death. These investigations highlight the role of the cidB gene in the death process and the accumulation of reactive oxygen species. Overall, the results of this study are the first to demonstrate a positive role for CidB in cell death and to provide an important paradigm for understanding this process in all bacteria.
Asunto(s)
Proteínas Bacterianas/metabolismo , Muerte Celular/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Represoras/metabolismo , Staphylococcus aureus/metabolismo , Transcripción Genética/fisiología , Proteínas Bacterianas/genética , Biopelículas , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , beta-Galactosidasa/metabolismoRESUMEN
The phosphotransacetylase-acetate kinase (Pta-AckA) pathway is thought to be a vital ATP generating pathway for Staphylococcus aureus. Disruption of the Pta-AckA pathway during overflow metabolism causes significant reduction in growth rate and viability, albeit not due to intracellular ATP depletion. Here, we demonstrate that toxicity associated with inactivation of the Pta-AckA pathway resulted from an altered intracellular redox environment. Growth of the pta and ackA mutants under anaerobic conditions partially restored cell viability. NMR metabolomics analyses and (13)C6-glucose metabolism tracing experiments revealed the activity of multiple pathways that promote redox (NADH/NAD(+)) turnover to be enhanced in the pta and ackA mutants during anaerobic growth. Restoration of redox homeostasis in the pta mutant by overexpressing l- lactate dehydrogenase partially restored its viability under aerobic conditions. Together, our findings suggest that during overflow metabolism, the Pta-AckA pathway plays a critical role in preventing cell viability defects by promoting intracellular redox homeostasis.
Asunto(s)
Acetato Quinasa/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Metabolómica , Fosfato Acetiltransferasa/genética , Staphylococcus aureus/genética , Acetato Quinasa/deficiencia , Adenosina Trifosfato/biosíntesis , Aerobiosis , Anaerobiosis , Proteínas Bacterianas/metabolismo , Isótopos de Carbono , Glucosa/metabolismo , Homeostasis , L-Lactato Deshidrogenasa/metabolismo , Espectroscopía de Resonancia Magnética , Viabilidad Microbiana , Mutación , NAD/metabolismo , Oxidación-Reducción , Fosfato Acetiltransferasa/deficiencia , Staphylococcus aureus/metabolismoRESUMEN
Toxoplasma gondii, a widespread parasite, has the ability to infect nearly any nucleated cell in warm-blooded vertebrates. It is estimated that around 2 billion people globally have been infected by this pathogen. Although most healthy individuals can effectively control parasite replication, certain parasites may evade the immune response, establishing cysts in the brain that are refractory to the immune system and resistant to available drugs. For its chronic persistence in the brain, the parasite relies on host cells' nutrients, particularly amino acids and lipids. Therefore, understanding how latent parasites persist in the brain is crucial for identifying potential drug targets against chronic forms. While shielded within parasitophorous vacuoles (PVs) or cysts, Toxoplasma exploits the host endoplasmic reticulum (ER) metabolism to sustain its persistence in the brain, resulting in host neurological alterations. In this study, we demonstrate that T. gondii disrupts the host ER homeostasis, resulting in the accumulation of unfolded protein within the host ER. The host counters this stress by initiating an autophagic pathway known as ER-phagy, which breaks down unfolded proteins into amino acids, promoting their recycling. Our findings unveil the underlying mechanisms employed by T. gondii to exploit host ER and lysosomal pathways, enhancing nutrient levels during infection. These insights provide new strategies for the treatment of toxoplasmosis. IMPORTANCE: Intracellular parasites employ several mechanisms to manipulate the cellular environment, enabling them to persist in the host. Toxoplasma gondii, a single-celled parasite, possesses the ability to infect virtually any nucleated cell of warm-blooded vertebrates, including nearly 2 billion people worldwide. Unfortunately, existing treatments and immune responses are not entirely effective in eliminating the chronic persisting forms of the parasite. This study reveals that T. gondii induces the host's autophagic pathway to boost amino acid levels in infected cells. The depletion of amino acids, in turn, influences the persistence of the parasite's chronic forms. Significantly, our investigation establishes the crucial role of host endoplasmic reticulum (ER)-phagy in the parasite's persistence within the host during latent infection.
Asunto(s)
Aminoácidos , Autofagia , Retículo Endoplásmico , Toxoplasma , Toxoplasma/fisiología , Aminoácidos/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Ratones , Toxoplasmosis/parasitología , Toxoplasmosis/metabolismo , Humanos , Encéfalo/parasitología , Interacciones Huésped-ParásitosRESUMEN
Infection is a devastating post-surgical complication, often requiring additional procedures and prolonged antibiotic therapy. This is especially relevant for craniotomy and prosthetic joint infections (PJI), both of which are characterized by biofilm formation on the bone or implant surface, respectively, with S. aureus representing a primary cause. The local tissue microenvironment likely has profound effects on immune attributes that can influence treatment efficacy, which becomes critical to consider when developing therapeutics for biofilm infections. However, the extent to which distinct tissue niches influence immune function during biofilm development remains relatively unknown. To address this, we compare the metabolomic, transcriptomic, and functional attributes of leukocytes in mouse models of S. aureus craniotomy and PJI complemented with patient samples from both infection modalities, which reveals profound tissue niche-dependent differences in nucleic acid, amino acid, and lipid metabolism with links to immune modulation. These signatures are both spatially and temporally distinct, differing not only between infection sites but evolving over time within a single model. Collectively, this demonstrates that biofilms elicit unique immune and metabolic responses that are heavily influenced by the local tissue microenvironment, which will likely have important implications when designing therapeutic approaches targeting these infections.
Asunto(s)
Biopelículas , Infecciones Relacionadas con Prótesis , Infecciones Estafilocócicas , Staphylococcus aureus , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Animales , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/metabolismo , Ratones , Humanos , Infecciones Relacionadas con Prótesis/inmunología , Infecciones Relacionadas con Prótesis/microbiología , Femenino , Modelos Animales de Enfermedad , Metaboloma , Craneotomía , Masculino , Ratones Endogámicos C57BL , Aminoácidos/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Transcriptoma , Metabolismo de los LípidosRESUMEN
Ticks, ectoparasitic arachnids, are prominent disease vectors impacting both humans and animals. Their unique blood-feeding phase involves significant abdominal cuticle expansion, sharing certain similarities with insects. However, vital aspects, including the mechanisms of cuticle expansion, changes in cuticular protein composition, chitin synthesis, and cuticle function, remain poorly understood. Given that the cuticle expansion is crucial for complete engorgement of the ticks, addressing these knowledge gaps is essential. Traditional tick research involving live animal hosts has inherent limitations, such as ethical concerns and host response variability. Artificial membrane feeding systems provide an alternative approach, offering controlled experimental conditions and reduced ethical dilemmas. These systems enable precise monitoring of tick attachment, feeding parameters, and pathogen acquisition. Despite the existence of various methodologies for artificial tick-feeding systems, there is a pressing need to enhance their reproducibility and effectiveness. In this context, we introduce an improved tick-feeding system that incorporates adjustments related to factors like humidity, temperature, and blood-feeding duration. These refinements markedly boost tick engorgement rates, presenting a valuable tool for in-depth investigations into tick cuticle biology and facilitating studies on molting. This refined system allows for collecting feeding ticks at specific stages, supporting research on tick cuticle biology, and evaluating chemical agents' efficacy in the engorgement process.
Asunto(s)
Sustitutos Sanguíneos , Ixodes , Humanos , Animales , Reproducibilidad de los Resultados , BiologíaRESUMEN
During aerobic growth, S. aureus relies on acetate overflow metabolism, a process where glucose is incompletely oxidized to acetate, for its bioenergetic needs. Acetate is not immediately captured as a carbon source and is excreted as waste by cells. The underlying factors governing acetate overflow in S. aureus have not been identified. Here, we show that acetate overflow is favored due to a thermodynamic bottleneck in the TCA cycle, specifically involving the oxidation of succinate to fumarate by succinate dehydrogenase. This bottleneck reduces flux through the TCA cycle, making it more efficient for S. aureus to generate ATP via acetate overflow metabolism. Additionally, the protein allocation cost of maintaining ATP flux through the restricted TCA cycle is greater than that of acetate overflow metabolism. Finally, we show that the TCA cycle bottleneck provides S. aureus the flexibility to redirect carbon towards maintaining redox balance through lactate overflow when oxygen becomes limiting, albeit at the expense of ATP production through acetate overflow. Overall, our findings suggest that overflow metabolism offers S. aureus distinct bioenergetic advantages over a thermodynamically constrained TCA cycle, potentially supporting its commensal-pathogen lifestyle.
RESUMEN
Background: Environmental lipopolysaccharide (LPS) and microbial component-enriched organic dusts cause significant lung disease. These environmental exposures induce the recruitment and activation of distinct lung monocyte/macrophage subpopulations involved in disease pathogenesis. Aconitate decarboxylase 1 (Acod1) was one of the most upregulated genes following LPS (vs. saline) exposure of murine whole lungs with transcriptomic profiling of sorted lung monocyte/macrophage subpopulations also highlighting its significance. Given monocyte/macrophage activation can be tightly linked to metabolism, the objective of these studies was to determine the role of the immunometabolic regulator ACOD1 in environmental exposure-induced lung inflammation. Methods: Wild-type (WT) mice were intratracheally (i.t.) instilled with 10 µg of LPS or saline. Whole lungs were profiled using bulk RNA sequencing or sorted to isolate monocyte/macrophage subpopulations. Sorted subpopulations were then characterized transcriptomically using a NanoString innate immunity multiplex array 48 h post-exposure. Next, WT and Acod1-/- mice were instilled with LPS, 25% organic dust extract (ODE), or saline, whereupon serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected. BALF metabolites of the tricarboxylic acid (TCA) cycle were quantified by mass spectrometry. Cytokines/chemokines and tissue remodeling mediators were quantitated by ELISA. Lung immune cells were characterized by flow cytometry. Invasive lung function testing was performed 3 h post-LPS with WT and Acod1-/- mice. Results: Acod1-/- mice treated with LPS demonstrated decreased BALF levels of itaconate, TCA cycle reprogramming, decreased BALF neutrophils, increased lung CD4+ T cells, decreased BALF and lung levels of TNF-α, and decreased BALF CXCL1 compared to WT animals. In comparison, Acod1-/- mice treated with ODE demonstrated decreased serum pentraxin-2, BALF levels of itaconate, lung total cell, neutrophil, monocyte, and B-cell infiltrates with decreased BALF levels of TNF-α and IL-6 and decreased lung CXCL1 vs. WT animals. Mediators of tissue remodeling (TIMP1, MMP-8, MMP-9) were also decreased in the LPS-exposed Acod1-/- mice, with MMP-9 also reduced in ODE-exposed Acod1-/- mice. Lung function assessments demonstrated a blunted response to LPS-induced airway hyperresponsiveness in Acod1-/- animals. Conclusion: Acod1 is robustly upregulated in the lungs following LPS exposure and encodes a key immunometabolic regulator. ACOD1 mediates the proinflammatory response to acute inhaled environmental LPS and organic dust exposure-induced lung inflammation.
Asunto(s)
Carboxiliasas , Lipopolisacáridos , Ratones Noqueados , Animales , Ratones , Carboxiliasas/metabolismo , Carboxiliasas/genética , Lipopolisacáridos/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/citología , Ratones Endogámicos C57BL , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Exposición a Riesgos Ambientales/efectos adversos , Neumonía/inmunología , Neumonía/inducido químicamente , Neumonía/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Citocinas/metabolismo , Masculino , HidroliasasRESUMEN
Weak organic acids are commonly found in host niches colonized by bacteria, and they can inhibit bacterial growth as the environment becomes acidic. This inhibition is often attributed to the toxicity resulting from the accumulation of high concentrations of organic anions in the cytosol, which disrupts cellular homeostasis. However, the precise cellular targets that organic anions poison and the mechanisms used to counter organic anion intoxication in bacteria have not been elucidated. Here, we utilize acetic acid, a weak organic acid abundantly found in the gut to investigate its impact on the growth of Staphylococcus aureus. We demonstrate that acetate anions bind to and inhibit d-alanyl-d-alanine ligase (Ddl) activity in S. aureus. Ddl inhibition reduces intracellular d-alanyl-d-alanine (d-Ala-d-Ala) levels, compromising staphylococcal peptidoglycan cross-linking and cell wall integrity. To overcome the effects of acetate-mediated Ddl inhibition, S. aureus maintains a substantial intracellular d-Ala pool through alanine racemase (Alr1) activity and additionally limits the flux of d-Ala to d-glutamate by controlling d-alanine aminotransferase (Dat) activity. Surprisingly, the modus operandi of acetate intoxication in S. aureus is common to multiple biologically relevant weak organic acids indicating that Ddl is a conserved target of small organic anions. These findings suggest that S. aureus may have evolved to maintain high intracellular d-Ala concentrations, partly to counter organic anion intoxication.
RESUMEN
Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs), which are critical for orchestrating the antiinflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxia response through HIF1a were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted Hif1a conditional KO mice, respectively, attenuated G-MDSC-mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, single-cell RNA-Seq (scRNA-Seq) analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxia-response genes. These findings support the importance of a glycolysis/HIF1a axis in promoting G-MDSC antiinflammatory activity and biofilm persistence during PJI.