Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
PLoS Genet ; 13(4): e1006744, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28426667

RESUMEN

Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that selective vulnerability of distinct motor neuron pools arises from fundamental modifications to their basal molecular profiles. Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice revealed that disease susceptibility correlates strongly with a modified bioenergetic profile. Targeting of identified bioenergetic pathways by enhancing mitochondrial biogenesis rescued motor axon defects in SMA zebrafish. Moreover, targeting of a single bioenergetic protein, phosphoglycerate kinase 1 (Pgk1), was found to modulate motor neuron vulnerability in vivo. Knockdown of pgk1 alone was sufficient to partially mimic the SMA phenotype in wild-type zebrafish. Conversely, Pgk1 overexpression, or treatment with terazosin (an FDA-approved small molecule that binds and activates Pgk1), rescued motor axon phenotypes in SMA zebrafish. We conclude that global bioenergetics pathways can be therapeutically manipulated to ameliorate SMA motor neuron phenotypes in vivo.


Asunto(s)
Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Fosfoglicerato Quinasa/genética , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Adenosina Trifosfato/metabolismo , Animales , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Mitocondrias/metabolismo , Neuronas Motoras/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Fosfoglicerato Quinasa/antagonistas & inhibidores , Prazosina/administración & dosificación , Prazosina/análogos & derivados , Médula Espinal/crecimiento & desarrollo , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
2.
Pulm Pharmacol Ther ; 40: 69-79, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27220632

RESUMEN

It is now recognized that certain polysaccharides can exhibit anti-inflammatory activity, including the glycosaminoglycan (GAG) heparin that is widely used as an anti-coagulant drug. However, it would be desirable to identify molecules that retain the anti-inflammatory actions of heparin, but that are devoid of significant anti-coagulant activity. In the present study we have identified a number of novel GAG and GAG-like polysaccharides (VRP327) from marine organisms, most of which were resistant to digestion by heparinase II and chondroitinase ABC. Fourier transform infra-red spectrum (FTIR) revealed species with variable degrees of sulphation and monosaccharide analysis revealed a range of sugar compounds, which in some cases included sugars not present in mammalian GAGs. (1)H NMR spectra of these species are consistent with the structures of complex polysaccharides. From an initial screening cascade to remove compounds having significant anti-coagulant activity and no overt cytotoxicity, we identified a high molecular weight oversulphated dermatan sulphate (VRP327) isolated from the tunicate Ascidiella aspersa which was fully characterised by NMR spectroscopy. This material was depolymerised to produce well characterized low molecular weight fractions which were demonstrated to be non-toxic, with low levels of anti-coagulant activity, and to have demonstrable anti-inflammatory activity assessed in several in vitro and in vivo models. The identification of low molecular weight polysaccharides having significant anti-inflammatory activity without significant anti-coagulant activity may provide novel templates for the development of a novel class of anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios/aislamiento & purificación , Glicosaminoglicanos/aislamiento & purificación , Polisacáridos/aislamiento & purificación , Urocordados/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Anticoagulantes/química , Anticoagulantes/aislamiento & purificación , Anticoagulantes/farmacología , Dermatán Sulfato/química , Dermatán Sulfato/aislamiento & purificación , Dermatán Sulfato/farmacología , Modelos Animales de Enfermedad , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos BALB C , Peso Molecular , Polisacáridos/química , Polisacáridos/farmacología
3.
J Biol Chem ; 289(41): 28284-98, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25147180

RESUMEN

Fucosylated chondroitin sulfate (fCS) extracted from the sea cucumber Holothuria forskali is composed of the following repeating trisaccharide unit: → 3)GalNAcß4,6S(1 → 4) [FucαX(1 → 3)]GlcAß(1 →, where X stands for different sulfation patterns of fucose (X = 3,4S (46%), 2,4S (39%), and 4S (15%)). As revealed by NMR and molecular dynamics simulations, the fCS repeating unit adopts a conformation similar to that of the Le(x) blood group determinant, bringing several sulfate groups into close proximity and creating large negative patches distributed along the helical skeleton of the CS backbone. This may explain the high affinity of fCS oligosaccharides for L- and P-selectins as determined by microarray binding of fCS oligosaccharides prepared by Cu(2+)-catalyzed Fenton-type and photochemical depolymerization. No binding to E-selectin was observed. fCS poly- and oligosaccharides display low cytotoxicity in vitro, inhibit human neutrophil elastase activity, and inhibit the migration of neutrophils through an endothelial cell layer in vitro. Although the polysaccharide showed some anti-coagulant activity, small oligosaccharide fCS fragments had much reduced anticoagulant properties, with activity mainly via heparin cofactor II. The fCS polysaccharides showed prekallikrein activation comparable with dextran sulfate, whereas the fCS oligosaccharides caused almost no effect. The H. forskali fCS oligosaccharides were also tested in a mouse peritoneal inflammation model, where they caused a reduction in neutrophil infiltration. Overall, the data presented support the action of fCS as an inhibitor of selectin interactions, which play vital roles in inflammation and metastasis progression. Future studies of fCS-selectin interaction using fCS fragments or their mimetics may open new avenues for therapeutic intervention.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Sulfatos de Condroitina/química , Enfermedades del Sistema Inmune/tratamiento farmacológico , Trastornos Leucocíticos/tratamiento farmacológico , Peritonitis/tratamiento farmacológico , Proteínas Inhibidoras de Proteinasas Secretoras/química , Pepinos de Mar/química , Animales , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Conformación de Carbohidratos , Sulfatos de Condroitina/aislamiento & purificación , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacología , Peróxido de Hidrógeno , Enfermedades del Sistema Inmune/metabolismo , Enfermedades del Sistema Inmune/patología , Hierro , Selectina L/química , Selectina L/metabolismo , Trastornos Leucocíticos/metabolismo , Trastornos Leucocíticos/patología , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/patología , Oxidación-Reducción , Selectina-P/química , Selectina-P/metabolismo , Peritonitis/metabolismo , Peritonitis/patología , Proteínas Inhibidoras de Proteinasas Secretoras/aislamiento & purificación , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/farmacología
4.
Hum Mol Genet ; 20(12): 2406-21, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21478199

RESUMEN

Apolipoprotein E (apoE) is a 34 kDa glycoprotein with three distinct isoforms in the human population (apoE2, apoE3 and apoE4) known to play a major role in differentially influencing risk to, as well as outcome from, disease and injury in the central nervous system. In general, the apoE4 allele is associated with poorer outcomes after disease or injury, whereas apoE3 is associated with better responses. The extent to which different apoE isoforms influence degenerative and regenerative events in the peripheral nervous system (PNS) is still to be established, and the mechanisms through which apoE exerts its isoform-specific effects remain unclear. Here, we have investigated isoform-specific effects of human apoE on the mouse PNS. Experiments in mice ubiquitously expressing human apoE3 or human apoE4 on a null mouse apoE background revealed that apoE4 expression significantly disrupted peripheral nerve regeneration and subsequent neuromuscular junction re-innervation following nerve injury compared with apoE3, with no observable effects on normal development, maturation or Wallerian degeneration. Proteomic isobaric tag for relative and absolute quantitation (iTRAQ) screens comparing healthy and regenerating peripheral nerves from mice expressing apoE3 or apoE4 revealed significant differences in networks of proteins regulating cellular outgrowth and regeneration (myosin/actin proteins), as well as differences in expression levels of proteins involved in regulating the blood-nerve barrier (including orosomucoid 1). Taken together, these findings have identified isoform-specific roles for apoE in determining the protein composition of peripheral nerve as well as regulating nerve regeneration pathways in vivo.


Asunto(s)
Apolipoproteínas E/metabolismo , Regeneración Nerviosa/fisiología , Sistema Nervioso Periférico/fisiología , Isoformas de Proteínas/metabolismo , Animales , Apolipoproteínas E/genética , Axones/metabolismo , Axones/ultraestructura , Western Blotting , Electrofisiología , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Orosomucoide/metabolismo , Sistema Nervioso Periférico/lesiones , Isoformas de Proteínas/genética , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
5.
J Neurosci ; 30(40): 13291-304, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20926655

RESUMEN

Axon and synapse degeneration are common components of many neurodegenerative diseases, and their rescue is essential for effective neuroprotection. The chimeric Wallerian degeneration slow protein (Wld(S)) protects axons dose dependently, but its mechanism is still elusive. We recently showed that Wld(S) acts at a non-nuclear location and is present in axons. This and other recent reports support a model in which Wld(S) protects by extranuclear redistribution of its nuclear NMNAT1 portion. However, it remains unclear whether cytoplasmic NMNAT1 acts locally in axons and synapses or at a non-nuclear site within cell bodies. The potency of axon protection by non-nuclear NMNAT1 relative to Wld(S) also needs to be established in vivo. Because the N-terminal portion of Wld(S) (N70) localized to axons, we hypothesized that it mediates the trafficking of the NMNAT1 portion. To test this, we substituted N70 with an axonal targeting peptide derived from amyloid precursor protein, and fused this to NMNAT1 with disrupted nuclear targeting. In transgenic mice, this transformed NMNAT1 from a molecule unable to inhibit Wallerian degeneration, even at high expression levels, into a protein more potent than Wld(S), able to preserve injured axons for several weeks at undetectable expression levels. Preventing NMNAT1 axonal delivery abolished its protective effect. Axonally targeted NMNAT1 localized to vesicular structures, colocalizing with extranuclear Wld(S), and was cotransported at least partially with mitochondria. We conclude that axonal targeting of NMNAT activity is both necessary and sufficient to delay Wallerian degeneration, and that promoting axonal and synaptic delivery greatly enhances the effectiveness.


Asunto(s)
Transporte Axonal/genética , Axones/metabolismo , Fármacos Neuroprotectores/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Sinapsis/metabolismo , Degeneración Walleriana/metabolismo , Degeneración Walleriana/fisiopatología , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Marcación de Gen/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Técnicas de Cultivo de Órganos , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Degeneración Walleriana/prevención & control
6.
Front Sociol ; 6: 681086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917674

RESUMEN

Policies and actions to address gender inequalities are widespread across a range of institutional and organisational contexts. Concerns have been raised about the efficacy and impacts of such measures in the absence of sustained evaluation of these activities. It has been proposed that important contextual factors may propel or inhibit measures to promote gender equality, including a critical mass of women, role models, diverse leaders and inclusive organisational cultures. This paper explores relationships between organisational justice and equality interventions to better understand gaps between equality policies and practices using a comparative case study approach in a male-dominated sector. A combination of questionnaire and interview data analysis with employees in three case organisations in the construction sector are used to outline links between perceptions of gender equality initiatives and organisational justice, and the mechanisms used to reinforce in-group dominance. The findings culminate in the development of an Employee Alignment Model and a discussion of how this relates to the organisational climate for gender equality work. The findings suggest that the development of interactional organisational justice is an important precursor for successful gender equality interventions in organisations. These findings have implications for those looking to minimize unintentional harm of policies or interventions to improve gender equality.

7.
Hum Mol Genet ; 17(7): 949-62, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18065780

RESUMEN

Proximal spinal muscular atrophy (SMA) is a common autosomal recessive childhood form of motor neuron disease. Previous studies have highlighted nerve- and muscle-specific events in SMA, including atrophy of muscle fibres and post-synaptic motor endplates, loss of lower motor neuron cell bodies and denervation of neuromuscular junctions caused by loss of pre-synaptic inputs. Here we have undertaken a detailed morphological investigation of neuromuscular synaptic pathology in the Smn-/-;SMN2 and Smn-/-;SMN2;Delta7 mouse models of SMA. We show that neuromuscular junctions in the transversus abdominis (TVA), levator auris longus (LAL) and lumbrical muscles were disrupted in both mouse models. Pre-synaptic inputs were lost and abnormal accumulations of neurofilament were present, even in early/mid-symptomatic animals in the most severely affected muscle groups. Neuromuscular pathology was more extensive in the postural TVA muscle compared with the fast-twitch LAL and lumbrical muscles. Pre-synaptic pathology in Smn-/-;SMN2;Delta7 mice was reduced compared with Smn-/-;SMN2 mice at late-symptomatic time-points, although post-synaptic pathology was equally severe. We demonstrate that shrinkage of motor endplates does not correlate with loss of motor nerve terminals, signifying that one can occur in the absence of the other. We also demonstrate selective vulnerability of a subpopulation of motor neurons in the caudal muscle band of the LAL. Paralysis with botulinum toxin resulted in less terminal sprouting and ectopic synapse formation in the caudal band compared with the rostral band, suggesting that motor units conforming to a Fast Synapsing (FaSyn) phenotype are likely to be more vulnerable than those with a Delayed Synapsing (DeSyn) phenotype.


Asunto(s)
Neuronas Motoras/fisiología , Atrofia Muscular Espinal/fisiopatología , Unión Neuromuscular/fisiopatología , Animales , Toxinas Botulínicas Tipo A/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Modelos Animales de Enfermedad , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Microscopía Fluorescente , Neuronas Motoras/patología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas de Neurofilamentos/metabolismo , Unión Neuromuscular/patología , Parálisis/fisiopatología , Fenotipo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Proteínas del Complejo SMN , Proteína 2 para la Supervivencia de la Neurona Motora
8.
Mol Cell Neurosci ; 42(4): 296-307, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19683573

RESUMEN

We used live imaging by fiber-optic confocal microendoscopy (CME) of yellow fluorescent protein (YFP) expression in motor neurons to observe and monitor axonal and neuromuscular synaptic phenotypes in mutant mice. First, we visualized slow degeneration of axons and motor nerve terminals at neuromuscular junctions following sciatic nerve injury in Wld(S) mice with slow Wallerian degeneration. Protection of axotomized motor nerve terminals was much weaker in Wld(S) heterozygotes than in homozygotes. We then induced covert modifiers of axonal and synaptic degeneration in heterozygous Wld(S) mice, by N-ethyl-N-nitrosourea (ENU) mutagenesis, and used CME to identify candidate mutants that either enhanced or suppressed axonal or synaptic degeneration. From 219 of the F1 progeny of ENU-mutagenized BALB/c mice and thy1.2-YFP16/Wld(S) mice, CME revealed six phenodeviants with suppression of synaptic degeneration. Inheritance of synaptic protection was confirmed in three of these founders, with evidence of Mendelian inheritance of a dominant mutation in one of them (designated CEMOP_S5). We next applied CME repeatedly to living Wld(S) mice and to SOD1(G93A) mice, an animal model of motor neuron disease, and observed degeneration of identified neuromuscular synapses over a 1-4day period in both of these mutant lines. Finally, we used CME to observe slow axonal regeneration in the ENU-mutant ostes mouse strain. The data show that CME can be used to monitor covert axonal and neuromuscular synaptic pathology and, when combined with mutagenesis, to identify genetic modifiers of its progression in vivo.


Asunto(s)
Axones/ultraestructura , Endoscopía/métodos , Tecnología de Fibra Óptica/métodos , Microscopía Confocal/métodos , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/ultraestructura , Superóxido Dismutasa/metabolismo , Animales , Axones/patología , Axones/fisiología , Modelos Animales de Enfermedad , Femenino , Tecnología de Fibra Óptica/instrumentación , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Microscopía Confocal/instrumentación , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/patología , Unión Neuromuscular/fisiología , Fenotipo , Superóxido Dismutasa/genética , Sinapsis/patología , Sinapsis/fisiología , Sinapsis/ultraestructura , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
9.
BMC Neurosci ; 10: 148, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-20015399

RESUMEN

BACKGROUND: The slow Wallerian Degeneration (Wld(S)) gene specifically protects axonal and synaptic compartments of neurons from a wide variety of degeneration-inducing stimuli, including; traumatic injury, Parkinson's disease, demyelinating neuropathies, some forms of motor neuron disease and global cerebral ischemia. The Wld(S) gene encodes a novel Ube4b-Nmnat1 chimeric protein (Wld(S) protein) that is responsible for conferring the neuroprotective phenotype. How the chimeric Wld(S) protein confers neuroprotection remains controversial, but several studies have shown that expression in neurons in vivo and in vitro modifies key cellular pathways, including; NAD biosynthesis, ubiquitination, the mitochondrial proteome, cell cycle status and cell stress. Whether similar changes are induced in non-neuronal tissue and organs at a basal level in vivo remains to be determined. This may be of particular importance for the development and application of neuroprotective therapeutic strategies based around Wld(S)-mediated pathways designed for use in human patients. RESULTS: We have undertaken a detailed analysis of non-neuronal Wld(S) expression in Wld(S) mice, alongside gravimetric and histological analyses, to examine the influence of Wld(S) expression in non-neuronal tissues. We show that expression of Wld(S) RNA and protein are not restricted to neuronal tissue, but that the relative RNA and protein expression levels rarely correlate in these non-neuronal tissues. We show that Wld(S) mice have normal body weight and growth characteristics as well as gravimetrically and histologically normal organs, regardless of Wld(S) protein levels. Finally, we demonstrate that previously reported Wld(S)-induced changes in cell cycle and cell stress status are neuronal-specific, not recapitulated in non-neuronal tissues at a basal level. CONCLUSIONS: We conclude that expression of Wld(S) protein has no adverse effects on non-neuronal tissue at a basal level in vivo, supporting the possibility of its safe use in future therapeutic strategies targeting axonal and/or synaptic compartments in patients with neurodegenerative disease. Future experiments determining whether Wld(S) protein can modify responses to injury in non-neuronal tissue are now required.


Asunto(s)
Riñón/química , Hígado/química , Proteínas del Tejido Nervioso/análisis , Bazo/química , Degeneración Walleriana/genética , Animales , Química Encefálica , Ciclo Celular , Cerebelo/química , Cerebelo/citología , Expresión Génica , Genotipo , Riñón/citología , Hígado/citología , Ratones , Ratones Endogámicos C57BL , Mutación , Miocardio/química , Proteínas del Tejido Nervioso/genética , ARN Mensajero/análisis , Bazo/citología , Timo/química , Timo/citología , Degeneración Walleriana/patología
10.
J Anat ; 213(6): 633-45, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19094180

RESUMEN

Wallerian degeneration and dying-back pathology are two well-known cellular pathways capable of regulating the breakdown and loss of axonal and synaptic compartments of neurons in vivo. However, the underlying mechanisms and molecular triggers of these pathways remain elusive. Here, we show that loss of translation elongation factor eEF1A2 expression in lower motor neurons and skeletal muscle fibres in homozygous Wasted mice triggered a dying-back neuropathy. Synaptic loss at the neuromuscular junction occurred in advance of axonal pathology and by a mechanism morphologically distinct from Wallerian degeneration. Dying-back pathology in Wasted mice was accompanied by reduced expression levels of the zinc finger protein ZPR1, as found in other dying-back neuropathies such as spinal muscular atrophy. Surprisingly, experimental nerve lesion revealed that Wallerian degeneration was significantly delayed in homozygous Wasted mice; morphological assessment revealed that approximately 80% of neuromuscular junctions in deep lumbrical muscles at 24 h and approximately 50% at 48 h had retained motor nerve terminals following tibial nerve lesion. This was in contrast to wild-type and heterozygous Wasted mice where < 5% of neuromuscular junctions had retained motor nerve terminals at 24 h post-lesion. These data show that eEF1A2 expression is required to prevent the initiation of dying-back pathology at the neuromuscular junction in vivo. In contrast, loss of eEF1A2 expression significantly inhibited the initiation and progression of Wallerian degeneration in vivo. We conclude that loss of eEF1A2 expression distinguishes mechanisms underlying dying-back pathology from those responsible for Wallerian degeneration in vivo and suggest that eEF1A2-dependent cascades may provide novel molecular targets to manipulate neurodegenerative pathways in lower motor neurons.


Asunto(s)
Degeneración Nerviosa/genética , Unión Neuromuscular/patología , Factor 1 de Elongación Peptídica/genética , Degeneración Walleriana/genética , Animales , Axones/patología , Western Blotting/métodos , Eliminación de Gen , Heterocigoto , Inmunohistoquímica , Ratones , Ratones Mutantes , Microscopía Fluorescente , Neuronas Motoras/patología , Fibras Musculares Esqueléticas/patología , Sinapsis/patología , Degeneración Walleriana/patología
12.
JCI Insight ; 1(11): e87908, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27699224

RESUMEN

The autosomal recessive neuromuscular disease spinal muscular atrophy (SMA) is caused by loss of survival motor neuron (SMN) protein. Molecular pathways that are disrupted downstream of SMN therefore represent potentially attractive therapeutic targets for SMA. Here, we demonstrate that therapeutic targeting of ubiquitin pathways disrupted as a consequence of SMN depletion, by increasing levels of one key ubiquitination enzyme (ubiquitin-like modifier activating enzyme 1 [UBA1]), represents a viable approach for treating SMA. Loss of UBA1 was a conserved response across mouse and zebrafish models of SMA as well as in patient induced pluripotent stem cell-derive motor neurons. Restoration of UBA1 was sufficient to rescue motor axon pathology and restore motor performance in SMA zebrafish. Adeno-associated virus serotype 9-UBA1 (AAV9-UBA1) gene therapy delivered systemic increases in UBA1 protein levels that were well tolerated over a prolonged period in healthy control mice. Systemic restoration of UBA1 in SMA mice ameliorated weight loss, increased survival and motor performance, and improved neuromuscular and organ pathology. AAV9-UBA1 therapy was also sufficient to reverse the widespread molecular perturbations in ubiquitin homeostasis that occur during SMA. We conclude that UBA1 represents a safe and effective therapeutic target for the treatment of both neuromuscular and systemic aspects of SMA.


Asunto(s)
Terapia Genética , Atrofia Muscular Espinal/terapia , Enzimas Activadoras de Ubiquitina/genética , Animales , Técnicas de Silenciamiento del Gen , Homeostasis , Humanos , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Pez Cebra
13.
J Neuropathol Exp Neurol ; 64(4): 295-303, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15835265

RESUMEN

Wasted (wst) is a spontaneous autosomal recessive mutation in which the gene encoding translation factor eEF1A2 is deleted. Homozygous mice show tremors and disturbances of gait shortly after weaning, followed by motor neuron degeneration, paralysis, and death by about 28 days. We have now conducted a more detailed analysis of neuromuscular pathology in these animals. Reactive gliosis was observed at 19 days postnatal in wst/wst cervical spinal cord, showing a rostrocaudal gradient. This was followed a few days later by motor neuron vacuolation and neurofilament accumulation, again with a rostrocaudal progression. Thoracic/abdominal muscles from wst/wst mice aged 17 days showed evidence of progressive denervation of motor endplates, including weak synaptic transmission and retraction of motor nerve terminals. Similar abnormalities appeared in distal, lumbrical muscles from about 25 days of age. We conclude that spontaneous failure of eEF1A2 expression in the wasted mutant first triggers gliosis in spinal cord and retraction of motor nerve terminals in muscle, and then motor neuron pathology and death. The early initiation and rapid progression of motor unit degeneration in wst/wst mice suggest that they should be considered an important and accessible model of early-onset motor neuron degeneration in humans.


Asunto(s)
Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Síndrome Debilitante , Animales , Electrofisiología , Humanos , Ratones , Neuronas Motoras/citología , Músculo Esquelético/inervación , Músculo Esquelético/patología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Prueba de Desempeño de Rotación con Aceleración Constante , Síndrome Debilitante/genética , Síndrome Debilitante/patología
14.
Nat Commun ; 6: 6761, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25854456

RESUMEN

How the brain's antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked.


Asunto(s)
Sinapsis Eléctricas/metabolismo , Lóbulo Frontal/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Maleato de Dizocilpina/farmacología , Sinapsis Eléctricas/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Lóbulo Frontal/efectos de los fármacos , Regulación de la Expresión Génica , Glutatión/efectos de los fármacos , Glutatión Peroxidasa/efectos de los fármacos , Glutatión Transferasa/efectos de los fármacos , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Proteínas Supresoras de Tumor/genética
15.
Neuroreport ; 15(1): 21-5, 2004 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-15106825

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) promotes neuronal survival and influences the development and function of synaptic connections. To test the role of GDNF on the stabilisation of synapses, we examined reinnervated neuromuscular junctions in myo-GDNF mice that over-express GDNF under control of a myogenin promoter. The level of polyneuronal innervation was increased following reinnervation in these mice, although many converging inputs were extremely fine and contained few neurofilaments. Electrophysiological experiments confirmed that some inputs were weak or non-functional by showing that the increased morphological levels of polyneuronal innervation were not reflected in the functional responses of endplates to nerve stimulation. Thus, myo-GDNF over-expression enhances reinnervation, but at the expense of both neurofilament integrity, and functional reliability.


Asunto(s)
Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Miogenina/biosíntesis , Factores de Crecimiento Nervioso/biosíntesis , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial , Ratones , Ratones Transgénicos , Miogenina/genética , Factores de Crecimiento Nervioso/genética
16.
Carbohydr Polym ; 106: 25-33, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24721047

RESUMEN

The lumpsucker, Cyclopterus lumpus, a cottoid teleost fish found in the cold waters of the North Atlantic, and North Pacific, was identified as a possible source of GAGs. The GAGs present in the C. lumpus dorsal hump and body wall tissue were isolated and purified. Two fractions were analysed by NMR and their GAG structures determined as hyaluronic acid and CS/DS chains. The latter fraction contained GlcA (65% of the total uronic acids) and IdoA (the remaining 35%). All uronic acid residues were unsulfated, whilst 86% of the GalNAc was 4-sulfated and 14% was 6-sulfated. The presence of GlcA-GalNAc4S, IdoA-GalNAc4S and GlcA-GalNAc6S disaccharide fragments was confirmed. The isolated GAGs obtained from each tissue were biochemically characterised. The lumpsucker offers a high yield source of GAGs, which compares favourably with other sources such as shark cartilage.


Asunto(s)
Sulfatos de Condroitina/química , Dermatán Sulfato/análogos & derivados , Peces/metabolismo , Ácido Hialurónico/química , Polímeros/química , Animales , Sulfatos de Condroitina/aislamiento & purificación , Dermatán Sulfato/química , Dermatán Sulfato/aislamiento & purificación , Ácido Hialurónico/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Oxidación-Reducción
17.
Dis Model Mech ; 7(6): 711-22, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24764192

RESUMEN

Mutations in RAB18 have been shown to cause the heterogeneous autosomal recessive disorder Warburg Micro syndrome (WARBM). Individuals with WARBM present with a range of clinical symptoms, including ocular and neurological abnormalities. However, the underlying cellular and molecular pathogenesis of the disorder remains unclear, largely owing to the lack of any robust animal models that phenocopy both the ocular and neurological features of the disease. We report here the generation and characterisation of a novel Rab18-mutant mouse model of WARBM. Rab18-mutant mice are viable and fertile. They present with congenital nuclear cataracts and atonic pupils, recapitulating the characteristic ocular features that are associated with WARBM. Additionally, Rab18-mutant cells exhibit an increase in lipid droplet size following treatment with oleic acid. Lipid droplet abnormalities are a characteristic feature of cells taken from WARBM individuals, as well as cells taken from individuals with other neurodegenerative conditions. Neurological dysfunction is also apparent in Rab18-mutant mice, including progressive weakness of the hind limbs. We show that the neurological defects are, most likely, not caused by gross perturbations in synaptic vesicle recycling in the central or peripheral nervous system. Rather, loss of Rab18 is associated with widespread disruption of the neuronal cytoskeleton, including abnormal accumulations of neurofilament and microtubule proteins in synaptic terminals, and gross disorganisation of the cytoskeleton in peripheral nerves. Global proteomic profiling of peripheral nerves in Rab18-mutant mice reveals significant alterations in several core molecular pathways that regulate cytoskeletal dynamics in neurons. The apparent similarities between the WARBM phenotype and the phenotype that we describe here indicate that the Rab18-mutant mouse provides an important platform for investigation of the disease pathogenesis and therapeutic interventions.


Asunto(s)
Anomalías Múltiples/fisiopatología , Catarata/congénito , Córnea/anomalías , Citoesqueleto/fisiología , Modelos Animales de Enfermedad , Ojo/crecimiento & desarrollo , Hipogonadismo/fisiopatología , Discapacidad Intelectual/fisiopatología , Microcefalia/fisiopatología , Neuronas/fisiología , Atrofia Óptica/fisiopatología , Proteínas de Unión al GTP rab/fisiología , Animales , Catarata/fisiopatología , Córnea/fisiopatología , Ratones , Ratones Noqueados , Proteínas de Unión al GTP rab/genética
18.
PLoS One ; 7(12): e52605, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23285108

RESUMEN

Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA.


Asunto(s)
Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Ratones , Ratones Noqueados , Enfermedad de la Neurona Motora/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular Espinal/genética , Unión Neuromuscular/metabolismo , Plasticidad Neuronal , Células de Schwann/metabolismo
19.
PLoS One ; 6(3): e17639, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21408118

RESUMEN

BACKGROUND: Mice expressing fluorescent proteins in neurons are one of the most powerful tools in modern neuroscience research and are increasingly being used for in vivo studies of neurodegeneration. However, these mice are often used under the assumption that the fluorescent proteins present are biologically inert. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that thy1-driven expression of yellow fluorescent protein (YFP) in neurons triggers multiple cell stress responses at both the mRNA and protein levels in vivo. The presence of YFP in neurons also subtly altered neuronal morphology and modified the time-course of dying-back neurodegeneration in experimental axonopathy, but not in Wallerian degeneration triggered by nerve injury. CONCLUSIONS/SIGNIFICANCE: We conclude that fluorescent protein expressed in thy1-YFP mice is not biologically inert, modifies molecular and cellular characteristics of neurons in vivo, and has diverse and unpredictable effects on neurodegeneration pathways.


Asunto(s)
Proteínas Bacterianas/metabolismo , Investigación Biomédica , Proteínas Luminiscentes/metabolismo , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Estrés Fisiológico , Animales , Forma de la Célula , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Degeneración Nerviosa/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología
20.
Eur J Neurosci ; 21(1): 271-7, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15654865

RESUMEN

The slow Wallerian degeneration phenotype, Wld(S), which delays Wallerian degeneration and axon pathology for several weeks, has so far been studied only in mice. A rat model would have several advantages. First, rats model some human disorders better than mice. Second, the larger body size of rats facilitates more complex surgical manipulations. Third, rats provide a greater yield of tissue for primary culture and biochemical investigations. We generated transgenic Wld(S) rats expressing the Ube4b/Nmnat1 chimeric gene in the central and peripheral nervous system. As in Wld(S) mice, their axons survive up to 3 weeks after transection and remain functional for at least 1 week. Protection of axotomized nerve terminals is stronger than in mice, particularly in one line, where 95-100% of neuromuscular junctions remained intact and functional after 5 days. Furthermore, the loss of synaptic phenotype with age was much less in rats than in mice. Thus, the slow Wallerian degeneration phenotype can be transferred to another mammalian species and synapses may be more effectively preserved after axotomy in species with longer axons.


Asunto(s)
Modelos Animales de Enfermedad , Unión Neuromuscular/fisiopatología , Degeneración Walleriana/fisiopatología , Animales , Animales Modificados Genéticamente , Axones/patología , Axones/ultraestructura , Axotomía/métodos , Encéfalo/metabolismo , Encéfalo/patología , Bungarotoxinas/metabolismo , Estimulación Eléctrica/métodos , Potenciales de la Membrana/fisiología , Ratones , Microscopía Confocal/métodos , Microscopía Electrónica de Transmisión/métodos , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/fisiología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Ratas , Neuropatía Ciática/complicaciones , Neuropatía Ciática/patología , Neuropatía Ciática/fisiopatología , Factores de Tiempo , Degeneración Walleriana/etiología , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA