Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes Genet Syst ; 94(6): 301-306, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31813924

RESUMEN

Centromere protein B (CENP-B), a protein participating in centromere formation, binds to centromere satellite DNA by recognizing a 17-bp motif called the CENP-B box. This motif is found in hominids (humans and great apes) at an identical location in repeat units of their centromere satellite DNA. We have recently reported that the CENP-B box exists at diverse locations in three New World monkey species (marmoset, squirrel monkey and tamarin). However, the evolutionary origin of the CENP-B box in these species was not determined. It could have been present in a common ancestor, or emerged multiple times in different lineages. Here we present results of a phylogenetic analysis of centromere satellite DNA that support the multiple emergence hypothesis. Repeat units almost invariably formed monophyletic groups in each species and the CENP-B box location was unique for each species. The CENP-B box is not essential for the immediate survival of its host organism. On the other hand, it is known to be required for de novo centromere assembly. Our results suggest that the CENP-B box confers a long-term selective advantage. For example, it may play a pivotal role when a centromere is accidentally lost or impaired.


Asunto(s)
Proteína B del Centrómero/metabolismo , Centrómero/química , ADN Satélite/química , Evolución Molecular , Platirrinos/genética , Animales , ADN Satélite/metabolismo , Motivos de Nucleótidos , Filogenia , Platirrinos/clasificación , Platirrinos/metabolismo
2.
Genes (Basel) ; 11(11)2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105659

RESUMEN

Transposable elements (TEs) are dynamic elements present in all eukaryotic genomes. They can "jump" and amplify within the genome and promote segmental genome rearrangements on both autosomes and sex chromosomes by disruption of gene structures. The Bovine-B long interspersed nuclear element (Bov-B LINE) is among the most abundant TE-retrotransposon families in vertebrates due to horizontal transfer (HT) among vertebrate lineages. Recent studies have shown multiple HTs or the presence of diverse Bov-B LINE groups in the snake lineage. It is hypothesized that Bov-B LINEs are highly dynamic and that the diversity reflects multiple HTs in snake lineages. Partial sequences of Bov-B LINE from 23 snake species were characterized. Phylogenetic analysis resolved at least two Bov-B LINE groups that might correspond to henophidian and caenophidian snakes; however, the tree topology differed from that based on functional nuclear and mitochondrial gene sequences. Several Bov-B LINEs of snakes showed greater than 80% similarity to sequences obtained from insects, whereas the two Bov-B LINE groups as well as sequences from the same snake species classified in different Bov-B LINE groups showed sequence similarities of less than 80%. Calculation of estimated divergence time and pairwise divergence between all individual Bov-B LINE copies suggest invasion times ranging from 79.19 to 98.8 million years ago in snakes. Accumulation of elements in a lineage-specific fashion ranged from 9 × 10-6% to 5.63 × 10-2% per genome. The genomic proportion of Bov-B LINEs varied among snake species but was not directly associated with genome size or invasion time. No differentiation in Bov-B LINE copy number between males and females was observed in any of the snake species examined. Incongruence in tree topology between Bov-B LINEs and other snake phylogenies may reflect past HT events. Sequence divergence of Bov-B LINEs between copies suggests that recent multiple HTs occurred within the same evolutionary timeframe in the snake lineage. The proportion of Bov-B LINEs varies among species, reflecting species specificity in TE invasion. The rapid speciation of snakes, coinciding with Bov-B LINE invasion in snake genomes, leads us to better understand the effect of Bov-B LINEs on snake genome evolution.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Transferencia de Gen Horizontal/genética , Elementos de Nucleótido Esparcido Largo/genética , Serpientes/genética , Animales , Secuencia de Bases , ADN/genética , Evolución Molecular , Femenino , Variación Genética/genética , Genoma/genética , Masculino , Tasa de Mutación , Alineación de Secuencia , Tailandia
3.
Sci Rep ; 9(1): 15459, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664097

RESUMEN

To better understand PBI-DdeI satellite DNA located in the centromeric region of python, molecular evolution analysis was conducted on 40 snake species. A ladder-like pattern of DNA bands with repetition of the 194-210 bp monomer was observed in 15 species using PCR. Molecular cloning was performed to obtain 97 AT-rich monomer sequences. Phylogenetic and network analyses showed three PBI-DdeI subfamilies with sequences grouped in species-specific clusters, suggesting rapid evolution. Slow evolution was found in eight species with shared PBI-DdeI sequences, suggesting recent species diversification, allowing PBI-DdeI no time to diverge, with limited homogenization and fixation processes. Quantitative real-time PCR showed large differences in copy number between Python bivittatus and other snakes, consistent with repeat scanning of whole genome sequences. Copy numbers were significantly higher in female Naja kaouthia than in males, concurring with chromosomal distribution of PBI-DdeI specifically localized to female W chromosomes. PBI-DdeI might act as an evolutionary driver with several repeats to promote W chromosome differentiation and heterochromatinization in N. kaouthia. Analysis revealed PBI-DdeI with a reduced copy number, compared to P. bivittatus, in most snakes studied, and it is possible that it subsequently dispersed and amplified on W chromosomes with different functional roles in N. kaouthia.


Asunto(s)
ADN Satélite/genética , Evolución Molecular , Serpientes/genética , Animales , ADN Satélite/clasificación , Filogenia , Cromosomas Sexuales
4.
PLoS One ; 14(10): e0223726, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31600336

RESUMEN

The fragmentation of habitats and hunting have impacted the Asian woolly-necked stork (Ciconia episcopus), leading to a serious risk of extinction in Thailand. Programs of active captive breeding, together with careful genetic monitoring, can play an important role in facilitating the creation of source populations with genetic variability to aid the recovery of endangered species. Here, the genetic diversity and population structure of 86 Asian woolly-necked storks from three captive breeding programs [Khao Kheow Open Zoo (KKOZ) comprising 68 individuals, Nakhon Ratchasima Zoo (NRZ) comprising 16 individuals, and Dusit Zoo (DSZ) comprising 2 individuals] were analyzed using 13 microsatellite loci, to aid effective conservation management. Inbreeding and an extremely low effective population size (Ne) were found in the KKOZ population, suggesting that deleterious genetic issues had resulted from multiple generations held in captivity. By contrast, a recent demographic bottleneck was observed in the population at NRZ, where the ratio of Ne to abundance (N) was greater than 1. Clustering analysis also showed that one subdivision of the KKOZ population shared allelic variability with the NRZ population. This suggests that genetic drift, with a possible recent and mixed origin, occurred in the initial NRZ population, indicating historical transfer between captivities. These captive stork populations require improved genetic variability and a greater population size, which could be achieved by choosing low-related individuals for future transfers to increase the adaptive potential of reintroduced populations. Forward-in-time simulations such as those described herein constitute the first step in establishing an appropriate source population using a scientifically managed perspective for an in situ and ex situ conservation program in Thailand.


Asunto(s)
Aves/genética , Variación Genética , Animales , Genética de Población , Endogamia , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA