Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712156

RESUMEN

Summary: The stria vascularis (SV), part of the blood-labyrinth barrier, is an essential component of the inner ear that regulates the ionic environment required for hearing. SV degeneration disrupts cochlear homeostasis, leading to irreversible hearing loss, yet a comprehensive understanding of the SV, and consequently therapeutic availability for SV degeneration, is lacking. We developed a whole-tissue explant model from neonatal and adult mice to create a robust platform for SV research. We validated our model by demonstrating that the proliferative behaviour of the SV in vitro mimics SV in vivo, providing a representative model and advancing high-throughput SV research. We also provided evidence for pharmacological intervention in our system by investigating the role of Wnt/ß-catenin signaling in SV proliferation. Finally, we performed single-cell RNA sequencing from in vivo neonatal and adult mouse SV and revealed key genes and pathways that may play a role in SV proliferation and maintenance. Together, our results contribute new insights into investigating biological solutions for SV-associated hearing loss. Significance: Hearing loss impairs our ability to communicate with people and interact with our environment. This can lead to social isolation, depression, cognitive deficits, and dementia. Inner ear degeneration is a primary cause of hearing loss, and our study provides an in depth look at one of the major sites of inner ear degeneration: the stria vascularis. The stria vascularis and associated blood-labyrinth barrier maintain the functional integrity of the auditory system, yet it is relatively understudied. By developing a new in vitro model for the young and adult stria vascularis and using single cell RNA sequencing, our study provides a novel approach to studying this tissue, contributing new insights and widespread implications for auditory neuroscience and regenerative medicine. Highlights: - We established an organotypic explant system of the neonatal and adult stria vascularis with an intact blood-labyrinth barrier. - Proliferation of the stria vascularis decreases with age in vitro , modelling its proliferative behaviour in vivo . - Pharmacological studies using our in vitro SV model open possibilities for testing injury paradigms and therapeutic interventions. - Inhibition of Wnt signalling decreases proliferation in neonatal stria vascularis.- We identified key genes and transcription factors unique to developing and mature SV cell types using single cell RNA sequencing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA