Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 20(6): 3073-3087, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37218930

RESUMEN

Covalent conjugation of a biologically stable polymer to a therapeutic protein, e.g., an antibody, holds many benefits such as prolonged plasma exposure of the protein and improved tumor uptake. Generation of defined conjugates is advantageous in many applications, and a range of site-selective conjugation methods have been reported. Many current coupling methods lead to dispersity in coupling efficiencies with subsequent conjugates of less-well-defined structure, which impacts reproducibility of manufacture and ultimately may impact successful translation to treat or image diseases. We explored designing stable, reactive groups for polymer conjugation reactions that would lead to conjugates through the simplest and most abundant residue on most proteins, the lysine residue, yielding conjugates in high purity and demonstrating retention of mAb efficacy through surface plasmon resonance (SPR), cell targeting, and in vivo tumor targeting. We utilized squaric acid diesters as coupling agents for selective amidation of lysine residues and were able to selectively conjugate one, or two, high-molecular-weight polymers to a therapeutically relevant antibody, 528mAb, that subsequently retained full binding specificity. Water-soluble copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) and N-isopropylacrylamide (NIPAM) were prepared by Reversible Addition-Fragmentation chain-Transfer (RAFT) polymerization and we demonstrated that a dual-dye-labeled antibody-RAFT conjugate (528mAb-RAFT) exhibited effective tumor targeting in model breast cancer xenografts in mice. The combination of the precise and selective squaric acid ester conjugation method, with the use of RAFT polymers, leads to a promising strategic partnership for improved therapeutic protein-polymer conjugates having a very-well-defined structure.


Asunto(s)
Neoplasias , Polímeros , Humanos , Animales , Ratones , Polímeros/química , Lisina , Reproducibilidad de los Resultados , Anticuerpos , Proteínas/química
2.
Mol Pharm ; 20(12): 6169-6183, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37970806

RESUMEN

Breast cancer brain metastases (BM) are associated with a dismal prognosis and very limited treatment options. Standard chemotherapy is challenging in BM patients because the high dosage required for an effective outcome causes unacceptable systemic toxicities, a consequence of poor brain penetration, and a short physiological half-life. Nanomedicines have the potential to circumvent off-target toxicities and factors limiting the efficacy of conventional chemotherapy. The HER3 receptor is commonly expressed in breast cancer BM. Here, we investigate the use of hyperbranched polymers (HBP) functionalized with a HER3 bispecific-antibody fragment for cancer cell-specific targeting and pH-responsive release of doxorubicin (DOX) to selectively deliver and treat BM. We demonstrated that DOX-release from the HBP carrier was controlled, gradual, and greater in endosomal acidic conditions (pH 5.5) relative to physiologic pH (pH 7.4). We showed that the HER3-targeted HBP with DOX payload was HER3-specific and induced cytotoxicity in BT474 breast cancer cells (IC50: 17.6 µg/mL). Therapeutic testing in a BM mouse model showed that HER3-targeted HBP with DOX payload impacted tumor proliferation, reduced tumor size, and prolonged overall survival. HER3-targeted HBP level detected in ex vivo brain samples was 14-fold more than untargeted-HBP. The HBP treatments were well tolerated, with less cardiac and oocyte toxicity compared to free DOX. Taken together, our HER3-targeted HBP nanomedicine has the potential to deliver chemotherapy to BM while reducing chemotherapy-associated toxicities.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Nanopartículas , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Polímeros/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Sistemas de Liberación de Medicamentos , Liberación de Fármacos
3.
Mol Pharm ; 20(3): 1549-1563, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36602058

RESUMEN

Glioblastoma (GBM) is the most aggressive form of primary brain cancer, accounting for about 85% of all primary central nervous system (CNS) tumors. With standard treatment strategies like surgery, radiation, and chemotherapy, the median survival time of patients with GBM is only 12-15 months from diagnosis. The poor prognosis of GBM is due to a very high tumor recurrence rate following initial treatment, indicating a dire need for improved diagnostic and therapeutic alternatives for this disease. Antibody-based immunotheranostics holds great promise in treating GBM, combining the theranostic applications of radioisotopes and target-specificity of antibodies. In this study, we developed and validated antibody-based positron emission tomography (PET) tracers targeting the heparan sulfate proteoglycan, glypican-1 (GPC-1), for noninvasive detection of disease using diagnostic molecular imaging. GPC-1 is overexpressed in multiple solid tumor types, including GBM, and is a promising biomarker for novel immunotheranostics. Here, we investigate zirconium-89 (89Zr)-conjugated Miltuximab (a clinical stage anti-GPC-1 monoclonal antibody developed by GlyTherix, Ltd.) and engineered fragments for their potential as immuno-PET tracers to detect GPC-1positive GBM tumors in preclinical models. We explore the effects of molecular size, avidity, and Fc-domain on the pharmacokinetics and biodistribution in vivo, by comparing in parallel the full-length antibody (Miltuximab), Fab'2, Fab, and single-chain variable fragment (scFv) formats. High radiolabeling efficiency (>95%) was demonstrated by all the formats and the stability post-radiolabeling was higher for larger constructs of Miltuximab and the Fab. Receptor-mediated internalization of all 89Zr-labeled formats was observed in a human GBM cell line in vitro, while full-length Miltuximab demonstrated the highest tumor retention (5.7 ± 0.94% ID/g, day-9 postinjection (p.i.)) and overall better tumor-to-background ratios than the smaller Fc-less formats. Results from in vivo PET image quantification and ex vivo scintillation counting were highly correlated. Altogether, 89Zr-DFO-Miltuximab appears to be an effective immuno-PET imaging agent for detecting GPC-1positive tumors such as GBM and the current results support utility of the Fc containing whole mAb format over smaller antibody fragments for this target.


Asunto(s)
Glioblastoma , Glipicanos , Humanos , Distribución Tisular , Anticuerpos Monoclonales/farmacocinética , Recurrencia Local de Neoplasia , Tomografía de Emisión de Positrones/métodos , Circonio , Fragmentos de Inmunoglobulinas , Línea Celular Tumoral
4.
Biomacromolecules ; 24(1): 246-257, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36464844

RESUMEN

Poly(2-oxazoline)s (POx) have received substantial attention as poly(ethylene glycol) (PEG) alternatives in the biomedical field due to their biocompatibility, high functionality, and ease of synthesis. While POx have demonstrated strong potential as biomaterial constituents, the larger family of poly(cyclic imino ether)s (PCIE) to which POx belongs remains widely underexplored. One highly interesting sub-class of PCIE is poly(2,4-disubstituted-2-oxazoline)s (PdOx), which bear an additional substituent on the backbone of the polymers' repeating units. This allows fine-tuning of the hydrophilic/hydrophobic balance and renders the PdOx chiral when enantiopure 2-oxazoline monomers are used. Herein, we synthesize new water-soluble (R-/S-/RS-) poly(oligo(2-ethyl-4-methyl-2-oxazoline) methacrylate) (P(OEtMeOxMA)) bottlebrushes and compare them to well-established PEtOx- and PEG-based bottlebrush controls in terms of their physical properties, hydrophilicity, and biological behavior. We reveal that the P(OEtMeOxMA) bottlebrushes show a lower critical solution temperature behavior at a physiologically relevant temperature (∼44 °C) and that the enantiopure (R-/S-) variants display a chiral secondary structure. Importantly, we demonstrate the biocompatibility of the chiral P(OEtMeOxMA) bottlebrushes through cellular association and mouse biodistribution studies and show that these systems display higher immune cell association and organ accumulation than the two control polymers. These novel materials possess properties that hold promise for applications in the field of nanomedicine and may be beneficial carriers for therapeutics that require enhanced cellular association and immune cell interaction.


Asunto(s)
Oxazoles , Agua , Ratones , Animales , Distribución Tisular , Oxazoles/química , Polietilenglicoles , Polímeros/química
5.
Biomacromolecules ; 24(6): 2674-2690, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37143361

RESUMEN

This study aimed to develop a multifunctional polymer platform that could address the issue of treatment resistance when using conventional chemotherapeutics to treat glioblastoma (GBM). An antibody-conjugated, multi-drug loaded hyperbranched polymer was developed that provided a platform to evaluate the role of targeted nanomedicine treatments in overcoming resistant GBM by addressing the various complications with current clinically administered formulations. The polymer was synthesized via reversible addition fragmentation chain transfer polymerization and included the clinical first-line alkylating agent temozolomide (TMZ) which was incorporated as a polymerizable monomer, poly (ethylene glycol) (PEG) units to impart biocompatibility and enable conjugation with αPEG-αEphA2 bispecific antibody (αEphA2 BsAb) for tumor targeting, and hydrazide moieties for attachment of a secondary drug which allows exploration of synergistic therapies. To overcome the resistance to TMZ, the O6 alkylguanine DNA alkyltransferase (AGT, DNA repair protein) inhibitor, dialdehyde O6 benzylguanine (DABG) was subsequently conjugated to the polymer via an acid labile hydrazone linker to facilitate controlled release under conditions encountered within the tumor microenvironment. The prolonged degradation half-life (4-5 h) of the polymer conjugated TMZ in vitro offered a potential avenue to overcome the inability to deliver these drugs in combination at therapeutic doses. Although only 20% of DABG could be released within the studied timeframe (192 h) under conditions mimicking the acidic nature of the tumor environment, cytotoxicity evaluation using cell assays confirmed the improved therapeutic efficacy toward resistant GBM cells after attaching DABG to the polymer delivery vehicle. Of note, when the polymeric delivery vehicle was specifically targeted to receptors (Ephrin A2) on the surface of the GBM cells using our in-house developed EphA2 specific BsAb, the dual-drug-loaded polymer exhibited an improved therapeutic effect on TMZ-resistant cells compared to the free drug combination. Both in vitro and in vivo targeting studies showed high uptake of the construct to GBM tumors with an upregulated EphA2 receptor (T98G and U251) compared to a tumor that had low expression (U87MG), where a dual tumor xenograft model was used to demonstrate the enhanced accumulation in tumor tissue in vivo. Despite the synthetic challenges of developing systems to effectively deliver controlled doses of TMZ and DABG, these studies highlight the potential benefit of this formulation for delivering multi-drug combinations to resistant GBM tumor cells and offer a platform for future optimization in therapeutic studies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Preparaciones Farmacéuticas , Medicina de Precisión , Recurrencia Local de Neoplasia/tratamiento farmacológico , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Polímeros/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Ensayos Antitumor por Modelo de Xenoinjerto , Microambiente Tumoral
6.
Angew Chem Int Ed Engl ; 62(8): e202212139, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36577702

RESUMEN

Chiral separation membranes have shown great potential for the efficient separation of racemic mixtures into enantiopure components for many applications, such as in the food and pharmaceutical industries; however, scalable fabrication of membranes with both high enantioselectivity and flux remains a challenge. Herein, enantiopure S-poly(2,4-dimethyl-2-oxazoline) (S-PdMeOx) macromonomers were synthesized and used to prepare a new type of enantioselective membrane consisting of a chiral S-PdMeOx network scaffolded by graphene oxide (GO) nanosheets. The S-PdMeOx-based membrane showed a near-quantitative enantiomeric excess (ee) (98.3±1.7 %) of S-(-)-limonene over R-(+)-limonene and a flux of 0.32 mmol m-2 h-1 . This work demonstrates the potential of homochiral poly(2,4-disubstituted-2-oxazoline)s in chiral discrimination and provides a new route to the development of highly efficient enantioselective membranes using synthetic homochiral polymer networks.

7.
Mol Pharm ; 19(11): 4080-4097, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36069540

RESUMEN

Nanomedicines show benefits in overcoming the limitations of conventional drug delivery systems by reducing side effects, toxicity, and exhibiting enhanced pharmacokinetic (PK) profiles to improve the therapeutic window of small-molecule drugs. However, upon administration, many nanoparticles (NPs) prompt induction of host innate immune responses, which in combination with other clearance pathways such as renal and hepatic, eliminate up to 99% of the administered dose. Here, we explore a drug predosing strategy to transiently suppress the mononuclear phagocyte system (MPS), subsequently improving the PK profile and biological behaviors exhibited by a model NP system [hyperbranched polymers (HBPs)] in an immunocompetent mouse model. In vitro assays allowed the identification of five drug candidates that attenuated cellular association. Predosing of lead compounds chloroquine (CQ) and zoledronic acid (ZA) further showed increased HBP retention within the circulatory system of mice, as shown by both fluorescence imaging and positron emission tomography-computed tomography. Flow cytometric evaluation of spleen and liver tissue cells following intravenous administration further demonstrated that CQ and ZA significantly reduced HBP association with myeloid cells by 23 and 16%, respectively. The results of this study support the use of CQ to pharmacologically suppress the MPS to improve NP PKs.


Asunto(s)
Productos Biológicos , Nanopartículas , Animales , Ratones , Nanopartículas/uso terapéutico , Nanomedicina , Sistemas de Liberación de Medicamentos/métodos , Macrófagos , Preparaciones Farmacéuticas , Cloroquina/farmacología
8.
Mol Pharm ; 19(5): 1233-1247, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35438509

RESUMEN

Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.


Asunto(s)
Productos Biológicos , Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos , Glioblastoma/metabolismo , Humanos , Recurrencia Local de Neoplasia
9.
Nano Lett ; 21(1): 476-484, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33350838

RESUMEN

We introduce xanthate-functionalized poly(cyclic imino ethers)s (PCIEs), specifically poly(2-ethyl-2-oxazoline) and poly(2-ethyl-2-oxazine) given their stealth characteristics, as an attractive alternative to conventional thiol-based ligands for the synthesis of highly monodisperse and fluorescent gold nanoclusters (AuNCs). The xanthate in the PCIEs interacts with Au ions, acting as a well-controlled template for the direct formation of PCIE-AuNCs. This method yields red-emitting AuNCs with a narrow emission peak (λem = 645 nm), good quantum yield (4.3-4.8%), long fluorescence decay time (∼722-844 ns), and unprecedented product yield (>98%). The PCIE-AuNCs exhibit long-term colloidal stability, biocompatibility, and antifouling properties, enabling a prolonged blood circulation, lower nonspecific accumulation in major organs, and better renal clearance when compared with AuNCs without polymer coating. The advances made here in the synthesis of metal nanoclusters using xanthate-functionalized PCIEs could propel the production of highly monodisperse, biocompatible, and renally clearable nanoprobes in large-scale for different theranostic applications.

10.
Mol Pharm ; 18(6): 2142-2160, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34010004

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, for which no effective treatment is yet available to either slow or terminate it. Recent advances in gene therapy renew hope for developing an effective approach to control this disease. Non-viral vectors, such as lipid- and polymer-based nanoparticles, cationic polymers, and exosomes, can effectively transfer genes into primary neurons. The resulting gene expression can be long-term, stable, and without immunological complications, which is essential for the effective management of neurological disorders. This Review will first describe the current research and clinical stage of novel therapies for ALS. It will then touch on the journey of non-viral vector use in ALS, subsequently highlighting the application of non-viral vector-mediated gene therapy. The bottlenecks in the translation of non-viral vectors for ALS treatment are also discussed, including the biological barriers of systemic administration and the issues of "when, where, and how much?" for effective gene delivery. The prospect of employing emerging techniques, such as CRISPR-Cas9 gene editing, stem cell methodology, and low-intensity focused ultrasound for fueling the transport of non-viral vectors to the central nervous system for personalized gene therapy, is briefly discussed in the context of ALS. Despite the challenging road that lies ahead, with the current expansion in interest and technological advancement in non-viral vector-delivered gene therapy for ALS, we hold hope that the field is headed toward a positive future.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Técnicas de Transferencia de Gen/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Esclerosis Amiotrófica Lateral/genética , Animales , Sistemas CRISPR-Cas/genética , Células Cultivadas , Ensayos Clínicos Fase III como Asunto , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen/tendencias , Terapia Genética/efectos adversos , Terapia Genética/tendencias , Vectores Genéticos/efectos adversos , Humanos , Nanopartículas/administración & dosificación , Cultivo Primario de Células
11.
Dig Dis Sci ; 66(12): 4326-4332, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33387125

RESUMEN

BACKGROUND: Colorectal cancer is a leading cause of cancer-related death worldwide and approximately 20% of cases can be attributed to a mutation in the BRAF oncogene. Curcumin is a promising chemopreventive agent with various anti-cancer benefits. Although curcumin has been reported to have poor bioavailability, this limitation has been overcome by the formulation of nano-carriers. In this preclinical study, we investigated the ability of an improved formulation of curcumin to reduce the incidence of Braf mutant carcinoma. AIM: To investigate curcumin as a chemopreventive for Braf mutant colorectal cancer in a preclinical study utilizing a murine model of serrated neoplasia. METHODS: An intestine-specific Braf mutant murine model (BrafV637E/+/Villin-CreERT2/+) was administered curcumin micelles (240 mg/kg, n = 69) in normal drinking water. Mice in the control group consumed normal drinking water (n = 83). Mice were euthanized at 14 months and the incidence of murine serrated lesions and carcinoma in each cohort were determined by histologic examination. RESULTS: At completion of the study (14 months), it was found that curcumin did not reduce the incidence or multiplicity of murine serrated lesions but did significantly reduce the number of invasive carcinomas (RR 0.83, 95% CI 0.69-0.9985, P = 0.0360) compared to control. CONCLUSIONS: We have performed the first long-term study assessing curcumin's effect on the development of serrated neoplasia. We found that curcumin significantly reduces the risk of developing Braf mutant colorectal cancer. Our data supports further investigation of curcumin as a chemopreventive to reduce the risk of colorectal cancer arising via the serrated pathway.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma/prevención & control , Neoplasias Colorrectales/prevención & control , Curcumina/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Quimioprevención , Neoplasias Colorrectales/genética , Curcuma , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Masculino , Ratones , Fitoterapia
12.
BMC Cancer ; 20(1): 1214, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33302918

RESUMEN

BACKGROUND: Glypican-1 is a heparan sulfate proteoglycan that is overexpressed in prostate cancer (PCa), and a variety of solid tumors. Importantly, expression is restricted in normal tissue, making it an ideal tumor targeting antigen. Since there is clinical and preclinical evidence of the efficacy of Bispecific T cell Engager (BiTE) therapy in PCa, we sought to produce and test the efficacy of a GPC-1 targeted BiTE construct based on the Miltuximab® sequence. Miltuximab® is a clinical stage anti-GPC-1 antibody that has proven safe in first in human trials. METHODS: The single chain variable fragment (scFv) of Miltuximab® and the CD3 binding sequence of Blinatumomab were combined in a standard BiTE format. Binding of the construct to immobilised recombinant CD3 and GPC-1 antigens was assessed by ELISA and BiaCore, and binding to cell surface-expressed antigens was measured by flow cytometry. The ability of MIL-38-CD3 to activate T cells was assessed using in vitro co-culture assays with tumour cell lines of varying GPC-1 expression by measurement of CD69 and CD25 expression, before cytolytic activity was assessed in a similar co-culture. The release of inflammatory cytokines from T cells was measured by ELISA and expression of PD-1 on the T cell surface was measured by flow cytometry. RESULTS: Binding activity of MIL-38-CD3 to both cell surface-expressed and immobilised recombinant GPC-1 and CD3 was retained. MIL-38-CD3 was able to mediate the activation of peripheral blood T cells from healthy individuals, resulting in the release of inflammatory cytokines TNF and IFN-g. Activation was reliant on GPC-1 expression as MIL-38-CD3 mediated only low level T cell activation in the presence of C3 cells (constitutively low GPC-1 expression). Activated T cells were redirected to lyse PCa cell lines PC3 and DU-145 (GPC-1 moderate or high expression, respectively) but could not kill GPC-1 negative Raji cells. The expression of PD-1 was up-regulated on the surface of MIL-38-CD3 activated T cells, suggesting potential for synergy with checkpoint inhibition. CONCLUSIONS: This study reports preclinical findings into the efficacy of targeting GPC-1 in PCa with BiTE construct MIL-38-CD3. We show the specificity and efficacy of the construct, supporting its further preclinical development.


Asunto(s)
Adenocarcinoma/patología , Anticuerpos Biespecíficos/farmacología , Glipicanos/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias de la Próstata/patología , Anticuerpos de Cadena Única/farmacología , Especificidad del Receptor de Antígeno de Linfocitos T , Linfocitos T Citotóxicos/inmunología , Adenocarcinoma/inmunología , Anticuerpos Biespecíficos/inmunología , Antígenos CD/análisis , Antígenos de Diferenciación de Linfocitos T/análisis , Complejo CD3/inmunología , Línea Celular Tumoral , Técnicas de Cocultivo , Citocinas/metabolismo , Citotoxicidad Inmunológica , Glipicanos/antagonistas & inhibidores , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Subunidad alfa del Receptor de Interleucina-2/análisis , Lectinas Tipo C/análisis , Activación de Linfocitos , Masculino , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias de la Próstata/inmunología , Proteínas Recombinantes/inmunología , Anticuerpos de Cadena Única/inmunología , Linfocitos T Citotóxicos/metabolismo
13.
Biomacromolecules ; 21(8): 3318-3331, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32687312

RESUMEN

In light of research reporting abnormal pharmacokinetic behavior for therapeutics and formulations containing poly(ethylene glycol) (PEG), a renewed emphasis has been placed on exploring alternative surrogate materials and tailoring specific materials to distinct nanomedicine applications. Poly(2-oxazolines) (POx) have shown great promise in this regard; however, a comparison of POx and PEG interactions with components of the immune system is needed to inform on their distinct suitability. Herein, the interaction of isolated immune cells following injection of hyperbranched polymers comprised of PEG or hydrophilic POx macromonomers was determined via flow cytometry. All materials showed similar association with all of the splenic immune cells analyzed. Interestingly, splenic CD68hi and CD11bhi macrophages showed similar levels of polymer association, despite CD11bhi being a smaller population, suggesting CD68 is linked to increased recognition and phagocytosis of these nanomaterials. This is of interest given that CD68 is a scavenger receptor and directly facilitates the clearance of cellular debris and promotion of phagocytosis, as opposed to CD11b, which is associated with the mediating inflammation via the production of cytokines as well as complement-mediated uptake of foreign particles. In the liver, PEG and poly(2-methyl oxazoline) hyperbranched polymers showed no discernible differences in their cellular association, while hyperbranched poly(2-ethyl oxazoline) showed increased association with dendrocytes and CD68hi macrophages, suggesting that this material exhibited a greater propensity to interact with components of the immune system. This work highlights the importance of how subtle changes in chemical structure can influence the immune response.


Asunto(s)
Oxazoles , Polietilenglicoles , Polímeros/metabolismo , Distribución Tisular
14.
Biomacromolecules ; 21(6): 2320-2333, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32343128

RESUMEN

Phosphorylcholine is known to repel the absorption of proteins onto surfaces, which can prevent the formation of a protein corona on the surface of nanoparticles. This can influence the fate of nanoparticles used for drug delivery. This material could therefore serve as an alternative to poly(ethylene glycol) (PEG). Herein, the synthesis of different particles prepared by polymerization-induced self-assembly (PISA) coated with either poly(ethylene glycol) (PEG) or zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and 4-(N-(S-penicillaminylacetyl)amino) phenylarsenonous acid (PENAO) was reported. The anticancer drug 4-(N-(S-penicillaminylacetyl)amino) phenylarsenonous acid (PENAO) was conjugated to the shell-forming block. Interactions of the different coated nanoparticles, which present comparable sizes and size distributions (76-85 nm, PDI = 0.067-0.094), with two-dimensional (2D) and three-dimensional (3D) cultured cells were studied, and their cytotoxicities, cellular uptakes, spheroid penetration, and cell localization profiles were analyzed. While only a minimal difference in behaviour was observed for nanoparticles assessed using in vitro experiment (with PEG-co- PENAO-coated micelles showing slightly higher cytotoxicity and better spheroid penetration and cell localization ability), the effect of the different physicochemical properties between nanoparticles had a more dramatic effect on in vivo biodistribution. After 1 h of injection, the majority of the MPC-co-PENAO-coated nanoparticles were found to accumulate in the liver, making this particle system unfeasible for future biological studies.


Asunto(s)
Nanopartículas , Polietilenglicoles , Micelas , Tamaño de la Partícula , Fosforilcolina , Distribución Tisular
15.
Analyst ; 145(13): 4504-4511, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32409797

RESUMEN

Dabrafenib is one of the most widely used of the new generation of targeted anti-cancer drugs. However, its therapeutic window varies for different patients and so there is an unmet need for methods to monitor the dose of drug which the patient receives and at the specific site where it acts. In the case of cancers, it is critical to measure the concentration of drug not just in the bloodstream overall, but in or near tumours, as these will not be the same over multiple time periods. A novel sensor based on an optical fibre long period grating (LPG) modified with a molecular imprinted polymer (MIP) has been developed with the ultimate aim of achieving minimally invasive measurements of Dabrafenib at the tumour site. A molecularly imprinted polymer specific for Dabrafenib was coated on a methacryloylalkoxysilane-functionalised optical fibre long period grating. In vitro experimental results demonstrate that the Dabrafenib sensitivity is 15.2 pm (µg mL-1)-1 (R2 = 0.993) with a limit of detection (LoD) of 74.4 µg mL-1 in serum solution. Moreover, the proposed sensor shows selective response to Dabrafenib over structurally similar 2-Aminoquinoline.


Asunto(s)
Antineoplásicos/sangre , Imidazoles/sangre , Polímeros Impresos Molecularmente/química , Fibras Ópticas , Oximas/sangre , Animales , Bovinos , Límite de Detección , Espectrofotometría/instrumentación , Espectrofotometría/métodos
16.
Macromol Rapid Commun ; 41(18): e2000319, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32767396

RESUMEN

Precision polymers as advanced nanomedicines represent an appealing approach for the treatment of otherwise untreatable malignancies. By taking advantage of unique nanomaterial properties and implementing judicious design strategies, polymeric nanomedicines are able to be produced that overcome many barriers to effective treatment. Current key research focus areas anticipated to produce the greatest impact in polymer applications in nanomedicine for oncology include new strategies to achieve "active" targeting, polymeric pro-drug activation, and combinatorial polymer drug delivery approaches in combination with enhanced understanding of complex bio-nano interactions. These approaches, both in isolation or combination, form the next generation of precision nanomedicines with significant anticipated future health outcomes. Of necessity, these approaches will combine an intimate understanding of biological interactions with advanced materials design. This perspectives piece aims to highlight emerging opportunities that promise to be game changers in the nanomedicine oncology field. Discussed herein are current and next generation polymeric nanomedicines with a focus towards structures that are, or could, undergo clinical translation as well as highlight key advances in the field.


Asunto(s)
Nanoestructuras , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamiento farmacológico , Polímeros/uso terapéutico
17.
Macromol Rapid Commun ; 41(21): e2000294, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32935886

RESUMEN

Novel conjugates that incorporate strategies for increasing the therapeutic payload, such as targeted polymeric delivery vehicles, have great potential in overcoming limitations of conventional antibody therapies that often exhibit immunogenicity and limited drug loading. Click chemistry has significantly expanded the toolbox of effective strategies for developing hybrid polymer-biomolecule conjugates, however, effective systems require orthogonality between the polymer and biomolecule chemistries to achieve efficient coupling. Here, three cycloaddition-based strategies for antibody conjugation to polymeric carriers are explored and show that a purely radical-based method for polymer synthesis and subsequent biomolecule attachment has a trade-off between coupling efficiency of the antibody and the ability to synthesize polymers with controlled chemical properties. It is shown that careful consideration of both coupling chemistries as well as the potential effect of how this modulates the chemical properties of the polymer nanocarrier should be considered during the development of such systems. The strategies described offer insight into improving conjugate development for therapeutic and theranostic applications. In this system, polymerization using conventional and established reversible addition fragmentation chain transfer (RAFT) agents, followed by multiple post-modification steps, always leads to systems with more defined chemical architectures compared to strategies that utilize alkyne-functional RAFT agents.


Asunto(s)
Aminoácidos , Polímeros , Química Clic , Reacción de Cicloadición , Polimerizacion
18.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30875730

RESUMEN

Brain metastases are the most prevalent of intracranial malignancies. They are associated with a very poor prognosis and near 100% mortality. This has been the case for decades, largely because we lack effective therapeutics to augment surgery and radiotherapy. Notwithstanding improvements in the precision and efficacy of these life-prolonging treatments, with no reliable options for adjunct systemic therapy, brain recurrences are virtually inevitable. The factors limiting intracranial efficacy of existing agents are both physiological and molecular in nature. For example, heterogeneous permeability, abnormal perfusion and high interstitial pressure oppose the conventional convective delivery of circulating drugs, thus new delivery strategies are needed to achieve uniform drug uptake at therapeutic concentrations. Brain metastases are also highly adapted to their microenvironment, with complex cross-talk between the tumor, the stroma and the neural compartments driving speciation and drug resistance. New strategies must account for resistance mechanisms that are frequently engaged in this milieu, such as HER3 and other receptor tyrosine kinases that become induced and activated in the brain microenvironment. Here, we discuss molecular and physiological factors that contribute to the recalcitrance of these tumors, and review emerging therapeutic strategies, including agents targeting the PI3K axis, immunotherapies, nanomedicines and MRI-guided focused ultrasound for externally controlling drug delivery.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Encéfalo/cirugía , Neoplasias Encefálicas/inmunología , Quimioradioterapia Adyuvante , Sistemas de Liberación de Medicamentos , Humanos , Inmunoterapia , Terapia Molecular Dirigida , Nanomedicina , Nanopartículas , Resultado del Tratamiento , Microambiente Tumoral
19.
Anal Chem ; 90(5): 3024-3029, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29443500

RESUMEN

Upconversion nanoparticles (UCNPs) are new optical probes for biological applications. For specific biomolecular recognition to be realized for diagnosis and imaging, the key lies in developing a stable and easy-to-use bioconjugation method for antibody modification. Current methods are not yet satisfactory regarding conjugation time, stability, and binding efficiency. Here, we report a facile and high-yield approach based on a bispecific antibody (BsAb) free of chemical reaction steps. One end of the BsAb is designed to recognize methoxy polyethylene glycol-coated UCNPs, and the other end of the BsAb is designed to recognize the cancer antigen biomarker. Through simple vortexing, BsAb-UCNP nanoprobes form within 30 min and show higher (up to 54%) association to the target than that of the traditional UCNP nanoprobes in the ELISA-like assay. We further demonstrate its successful binding to the cancer cells with high efficiency and specificity for background-free fluorescence imaging under near-infrared excitation. This method suggests a general approach broadly suitable for functionalizing a range of nanoparticles to specifically target biomolecules.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Inmunoconjugados/inmunología , Nanopartículas/química , Anticuerpos Biespecíficos/química , Línea Celular Tumoral , Fluorescencia , Humanos , Inmunoconjugados/química , Luz , Microscopía Confocal/métodos , Nanopartículas/efectos de la radiación , Polietilenglicoles/química , Receptor EphA2/inmunología
20.
Mol Pharm ; 14(12): 4485-4497, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29116801

RESUMEN

Nanoscaled polymeric materials are increasingly being investigated as pharmaceutical products, drug/gene delivery vectors, or health-monitoring devices. Surface charge is one of the dominant parameters that regulates nanomaterial behavior in vivo. In this paper, we demonstrated how control over chemical synthesis allowed manipulation of nanoparticle surface charge, which in turn greatly influenced the in vivo behavior. Three methacrylate/methacrylamide-based monomers were used to synthesize well-defined hyperbranched polymers (HBP) by reversible addition-fragmentation chain transfer (RAFT) polymerization. Each HBP had a hydrodynamic diameter of approximately 5 nm as determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Incorporation of a fluorescent moiety within the polymeric nanoparticles allowed determination of how charge affected the in vivo pharmacokinetic behavior of the nanomaterials and the biological response to them. A direct correlation between surface charge, cellular uptake, and cytotoxicity was observed, with cationic HBPs exhibiting higher cellular uptake and cytotoxicity than their neutral and anionic counterparts. Evaluation of the distribution of the differently charged HBPs within macrophages showed that all HBPs accumulated in the cytoplasm, but cationic HBPs also trafficked to, and accumulated within, the nucleus. Although cationic HBPs caused slight hemolysis, this was generally below accepted levels for in vivo safety. Analysis of pharmacokinetic behavior showed that cationic and anionic HBPs had short blood half-lives of 1.82 ± 0.51 and 2.34 ± 0.93 h respectively, compared with 5.99 ± 2.30 h for neutral HBPs. This was attributed to the fact that positively charged surfaces are more readily covered with opsonin proteins and thus more visible to phagocytic cells. This was supported by in vitro flow cytometric and qualitative live cell imaging studies, which showed that cationic HBPs tended to be taken up by macrophages more effectively and rapidly than neutral and anionic particles.


Asunto(s)
Cationes/farmacología , Supervivencia Celular/efectos de los fármacos , Hemólisis/efectos de los fármacos , Nanopartículas/química , Polímeros/farmacología , Animales , Cationes/química , Permeabilidad de la Membrana Celular , Dispersión Dinámica de Luz , Citometría de Flujo , Semivida , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Masculino , Metacrilatos/química , Metacrilatos/farmacología , Ratones , Microscopía Electrónica de Transmisión , Modelos Animales , Polimerizacion , Polímeros/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA