Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 143: 107004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086238

RESUMEN

In this study, we identified a newly synthesized compound 7o with potent inhibition on EGFR primary mutants (L858R, Del19) and drug-resistant mutant T790M with nanomolar IC50 values. 7o showed strong antiproliferative effects against EGFR mutant-driven non-small cell lung cancer (NSCLC) cells such as H1975, PC-9 and HCC827, over cells expressing EGFRWT. Molecular docking was performed to investigate the possible binding modes of 7o inside the binding site of EGFRL858R/T790M and EGFRWT. Analysis of cell cycle evidenced that 7o induced cell cycle arrest in G1 phases in the EGFR mutant cells, H1975 and PC-9, which resulted in decreased S-phase populations. Moreover, compound 7o induced cancer cell apoptosis in in vitro assays. In addition, 7o inhibited cellular phosphorylation of EGFR. In vivo, oral administration of 7o caused rapid tumor regression in H1975 xenograft model. Therefore, 7o might deserve further optimization as cancer treatment agent for EGFR mutant-driven NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptores ErbB , Simulación del Acoplamiento Molecular , Proliferación Celular , Inhibidores de Proteínas Quinasas , Mutación , Línea Celular Tumoral , Resistencia a Antineoplásicos
2.
Theranostics ; 14(7): 2757-2776, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773982

RESUMEN

Background: Cancer cells are capable of evading clearance by macrophages through overexpression of anti-phagocytic surface proteins known as "don't eat me" signals. Monoclonal antibodies that antagonize the "don't-eat-me" signaling in macrophages and tumor cells by targeting phagocytic checkpoints have shown therapeutic promises in several cancer types. However, studies on the responses to these drugs have revealed the existence of other unknown "don't eat me" signals. Moreover, identification of key molecules and interactions regulating macrophage phagocytosis is required for tumor therapy. Methods: CRISPR screen was used to identify genes that impede macrophage phagocytosis. To explore the function of Vtn and C1qbp in phagocytosis, knockdown and subsequent functional experiments were conducted. Flow cytometry were performed to explore the phagocytosis rate, polarization of macrophage, and immune microenvironment of mouse tumor. To explore the underlying molecular mechanisms, RNA sequencing, immunoprecipitation, mass spectrometry, and immunofluorescence were conducted. Then, in vivo experiments in mouse models were conducted to explore the probability of Vtn knockdown combined with anti-CD47 therapy in breast cancer. Single-cell sequencing data from the Gene Expression Omnibus from The Cancer Genome Atlas database were analyzed. Results: We performed a genome-wide CRISPR screen to identify genes that impede macrophage phagocytosis, followed by analysis of cell-to-cell interaction databases. We identified a ligand-receptor pair of Vitronectin (Vtn) and complement C1Q binding protein (C1qbp) in tumor cells or macrophages, respectively. We demonstrated tumor cell-secreted Vtn interacts with C1qbp localized on the cell surface of tumor-associated macrophages, inhibiting phagocytosis of tumor cells and shifting macrophages towards the M2-like subtype in the tumor microenvironment. Mechanistically, the Vtn-C1qbp axis facilitated FcγRIIIA/CD16-induced Shp1 recruitment, which reduced the phosphorylation of Syk. Furthermore, the combination of Vtn knockdown and anti-CD47 antibody effectively enhanced phagocytosis and infiltration of macrophages, resulting in a reduction of tumor growth in vivo. Conclusions: This work has revealed that the Vtn-C1qbp axis is a new anti-phagocytic signal in tumors, and targeting Vtn and its interaction with C1qbp may sensitize cancer to immunotherapy, providing a new molecular target for the treatment of triple-negative breast cancer.


Asunto(s)
Antígeno CD47 , Macrófagos , Fagocitosis , Animales , Ratones , Humanos , Macrófagos/metabolismo , Macrófagos/inmunología , Antígeno CD47/metabolismo , Antígeno CD47/genética , Femenino , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Comunicación Celular , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/genética , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos BALB C , Proteínas Portadoras , Proteínas Mitocondriales
3.
Mol Ther Methods Clin Dev ; 18: 765-780, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32953928

RESUMEN

Various long non-coding RNAs (lncRNAs) are closely associated with lung adenocarcinoma (LUAD), playing oncogenic or anti-oncogenic roles in tumorigenesis and progression. Herein, we report a novel lncRNA-long intergenic non-protein coding RNA 1426 (LINC01426)-that has not yet been characterized in LUAD. We note that LINC01426 expression was markedly upregulated in LUAD tissues, and that functional assays verified that LINC01426 knockdown markedly inhibited cell proliferation, migration, and invasion in vitro. Xenografts derived from A549 cells knocked down of LINC01426 had evidently lower tumor weights and smaller tumor volumes. Our study also found that LINC01426 bound to hsa-miR-30b-3p as a competitive endogenous RNA in LUAD. Moreover, LINC01426 affected LUAD wound healing by interacting and combining with AZGP1, and LINC01426 expression was significantly associated with tumor-node-metastasis (TNM) staging and prognosis in patients with LUAD. To summarize, our study elucidates the oncogenic roles of LINC01426 in LUAD tumorigenesis and progression. We think that LINC01426 can serve as a potential diagnostic biomarker and therapeutic target in patients with LUAD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA