Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(13): e202316837, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38315104

RESUMEN

The interfacial processes, mainly the lithium (Li) plating/stripping and the evolution of the solid electrolyte interphase (SEI), are directly related to the performance of all-solid-state Li-metal batteries (ASSLBs). However, the complex processes at solid-solid interfaces are embedded under the solid-state electrolyte, making it challenging to analyze the dynamic processes in real time. Here, using in situ electrochemical atomic force microscopy and optical microscopy, we directly visualized the Li plating/stripping/replating behavior, and measured the morphological and mechanical properties of the on-site formed SEI at nanoscale. Li spheres plating/stripping/replating at the argyrodite solid electrolyte (Li6 PS5 Cl)/Li electrode interface is coupled with the formation/wrinkling/inflating of the SEI on its surface. Combined with in situ X-ray photoelectron spectroscopy, details of the stepwise formation and physicochemical properties of SEI on the Li spheres are obtained. It is shown that higher operation rates can decrease the uniformity of the Li+ -conducting networks in the SEI and worsen Li plating/stripping reversibility. By regulating the applied current rates, uniform nucleation and reversible plating/stripping processes can be achieved, leading to the extension of the cycling life. The in situ analysis of the on-site formed SEI at solid-solid interfaces provides the correlation between the interfacial evolution and the electrochemical performance in ASSLBs.

2.
Angew Chem Int Ed Engl ; 61(52): e202212744, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36310122

RESUMEN

Lithium-sulfur batteries are promising candidates of energy storage devices. Both adjusting salt/solvent ratio and applying quasi-solid-state electrolytes are regarded as effective strategies to improve the lithium (Li) anode performance. However, reaction mechanisms and interfacial properties in quasi-solid-state lithium-sulfur (QSSLS) batteries with high salt concentration are not clear. Here we utilize in-situ characterizations and molecular dynamics simulations to unravel aforesaid mysteries, and construct relationships of electrolyte structure, interfacial behaviour and performance. The generation mechanism, formation process, and mechanical/chemical/electrochemical properties of the anion-derived solid electrolyte interphase (SEI) are deeply explored. Li deposition uniformity and dissolution reversibility are further tuned by the sustainable SEI. These straightforward evidences and deepgoing studies would guide the electrolyte design and interfacial engineering of QSSLS batteries.

3.
Int J Mol Sci ; 15(11): 19394-405, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25347277

RESUMEN

Catalpol is expected to possess diverse pharmacological actions including anti-cancer, anti-inflammatory and hypoglycemic properties. Matrix metalloproteinase-2 (MMP-2) is closely related to the pathogenesis of ovarian cancer. In addition, microRNA-200 (miR-200) can modulate phenotype, proliferation, infiltration and transfer of various tumors. Here, OVCAR-3 cells were employed to investigate whether the effect of catalpol (25, 50 and 100 µg/mL) promoted apoptosis of ovarian cancer cells and to explore the potential mechanisms. Our results demonstrate that catalpol could remarkably reduce the proliferation and accelerate the apoptosis of OVCAR-3 cells. Interestingly, our findings show that catalpol treatment significantly decreased the MMP-2 protein level and increased the miR-200 expression level in OVCAR-3 cells. Further, microRNA-200 was shown to regulate the protein expression of MMP-2 in OVCAR-3 cells. It is concluded that catalpol suppressed cellular proliferation and accelerated apoptosis in OVCAR-3 ovarian cancer cells via promoting microRNA-200 expression levels and restraining MMP-2 signaling.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucósidos Iridoides/farmacología , Metaloproteinasa 2 de la Matriz/genética , MicroARNs/genética , Neoplasias Ováricas/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasa 3 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Glucósidos Iridoides/química , Neoplasias Ováricas/metabolismo , Interferencia de ARN , ARN Mensajero/genética
4.
Small Methods ; 7(6): e2300392, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37186499

RESUMEN

Water-in-salt (WIS) electrolyte is considered as one of most promising systems for aqueous zinc batteries (AZBs) due to its dendrite-free plating/stripping with nearly 100% Coulombic efficiency. However, the understanding of the interfacial mechanisms remains elusive, which is crucial for further improvements in battery performance. Herein, the interfacial processes of solid electrolyte interphase (SEI) formation and subsequent Zn plating/stripping are monitored by in situ atomic force microscopy and in situ optical microscopy. The live formation of uniform and compact LiF-rich SEI in WIS systems could induce the uniform hexagonal Zn deposition with preferential orientation growth in the (002) crystal plane, showing excellent plating/stripping reversibility. In contrast, the SEI formed in 1 m zinc bis(trifluoromethylsulfonyl)imide (Zn(TFSI)2 ) is uneven and rich in inert ZnO, adversely triggering the dendrite propagation and successive "dead" Zn accumulation in repeated deposition/dissolution cycles. This work provides an in-depth understanding of the relationship between SEI evolution and Zn-deposited behaviors in AZBs, possibly stimulating more research on rational composition design and structural optimization of solid/liquid interface for advanced rechargeable aqueous multivalent-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA