Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Anal Chem ; 96(16): 6356-6365, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38588440

RESUMEN

Renal fibrosis poses a significant threat to individuals suffering from chronic progressive kidney disease. Given the absence of effective medications for treating renal fibrosis, it becomes crucial to assess the extent of fibrosis in real time and explore the development of novel drugs with substantial therapeutic benefits. Due to the accumulation of renal tissue damage and the uncontrolled deposition of fibrotic matrix during the course of the disease, there is an increase in viscosity both intracellularly and extracellularly. Therefore, a viscosity-sensitive near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging probe, BDP-KY, was developed to detect aberrant changes in viscosity during fibrosis. Furthermore, BDP-KY has been applied to screen the effective components of herbal medicine, rhubarb, resulting in the identification of potential antirenal fibrotic compounds such as emodin-8-glucoside and chrysophanol 8-O-glucoside. Ultrasound, PA, and NIRF imaging of a unilateral uretera obstruction mice model show that different concentrations of emodin-8-glucoside and chrysophanol 8-O-glucoside effectively reduce viscosity levels during the renal fibrosis process. The histological results showed a significant decrease in fibrosis factors α-smooth muscle actin and collagen deposition. Combining these findings with their pharmacokinetic characteristics, these compounds have the potential to fill the current market gap for effective antirenal fibrosis drugs. This study demonstrates the potential of BDP-KY in the evaluation of renal fibrosis, and the two identified active components from rhubarb hold great promise for the treatment of renal fibrosis.

2.
Analyst ; 149(13): 3585-3595, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38767148

RESUMEN

The main protease of SARS-CoV-2 (SARS-CoV-2 Mpro) plays a critical role in the replication and life cycle of the virus. Currently, how to screen SARS-CoV-2 Mpro inhibitors from complex traditional Chinese medicine (TCM) is the bottleneck for exploring the pharmacodynamic substances of TCM against SARS-CoV-2. In this study, a simple, cost-effective, rapid, and selective fluorescent sensor (TPE-S-TLG sensor) was designed with an AIE (aggregation-induced emission) probe (TPE-Ph-In) and the SARS-CoV-2 Mpro substrate (S-TLG). The TPE-S-TLG sensor was characterized using UV-Vis absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential, and Fourier transform infrared (FTIR) spectroscopy techniques. The limit of detection of this method to detect SARS-CoV-2 Mpro was measured to be 5 ng mL-1. Furthermore, the TPE-S-TLG sensor was also successfully applied to screen Mpro inhibitors from Xuebijing injection using the separation and collection of the HPLC-fully automatic partial fraction collector (HPLC-FC). Six active compounds, including protocatechualdehyde, chlorogenic acid, hydroxysafflower yellow A, caffeic acid, isoquercetin, and pentagalloylglucose, were identified using UHPLC-Q-TOF/MS that could achieve 90% of the Mpro inhibition rate for the Xuebijing injection. Accordingly, the strategy can be broadly applied in the detection of disease-related proteases as well as screening active substances from TCM.


Asunto(s)
Proteasas 3C de Coronavirus , Colorantes Fluorescentes , Medicina Tradicional China , SARS-CoV-2 , Espectrometría de Fluorescencia , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/efectos de los fármacos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Humanos , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Antivirales/farmacología , Antivirales/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/análisis , COVID-19/virología , COVID-19/diagnóstico , Límite de Detección , Tratamiento Farmacológico de COVID-19
3.
Bioorg Chem ; 138: 106662, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37307714

RESUMEN

The construction of novel organoboron complexes with facile synthesis and unique advantages for biological imaging remains a challenge and thus has garnered considerable attention. Herein, we developed a new molecular platform, boron indolin-3-one-pyrrol (BOIN3OPY) via a two-step sequential reaction. The molecular core is robust enough to allow for post-functionalization to produce versatile dyes. When compared to the standard BODIPY, these dyes feature an N,O-bidentate seven-membered ring center, significantly redshifted absorption, and a larger Stokes shift. This study establishes a new molecular platform that provides more flexibility for the functional regulation of dyes.


Asunto(s)
Compuestos de Boro , Colorantes Fluorescentes
4.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37447963

RESUMEN

The differences in urinary proteins could provide a novel opportunity to distinguish the different types of drug-induced kidney injury (DIKI). In this research, Au nanoparticles-polyethyleneimine (AuNPs-PEI) and the three fluorophore-labeled proteins (FLPs) have been constructed as a multichannel fluorescent array sensor via electrostatic interaction, which was used to detect the subtle changes in urine collected from the pathological state of DIKI. Once the urine from different types of DIKI was introduced, the binding equilibrium between AuNPs-PEI and FLPs would be broken due to the competitive binding of urinary protein, and the corresponding fluorescence response pattern would be generated. Depending on the different fluorescence response patterns, the different types of DIKI were successfully identified by principal component analysis (PCA) and linear discriminant analysis (LDA). Accordingly, the strategy was expected to be a powerful technique for evaluating the potential unclear mechanisms of nephrotoxic drugs, which would provide a promising method for screening potential renal-protective drugs.


Asunto(s)
Oro , Nanopartículas del Metal , Proteínas , Colorantes Fluorescentes , Riñón
5.
Anal Chem ; 94(15): 5918-5926, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35385655

RESUMEN

Homeostasis of the cellular redox status plays an indispensable role in diverse physiological and pathological processes. Hypochlorite anion (ClO-) and glutathione (GSH) represent an important redox couple to reflect the redox status in living cells. The current cellular redox probes that detect either ClO- or GSH alone are not accurate enough to monitor the real redox status. In this work, a reversible photoacoustic (PA) probe, DiOH-BDP, has been synthesized and applied for PA imaging to monitor the ClO-/GSH couple redox state in an acute liver injury (ALI) model. The near-infrared PA probe DiOH-BDP features significant changes in absorption between 648 and 795 nm during the selective oxidation by ClO- and the reductive recovery of GSH, which exhibits excellent selectivity and sensitivity toward ClO- and GSH with the limits of detection of 77.7 nM and 7.2 µM, respectively. Additionally, using PA770 as a detection signal allows for the in situ monitoring of the ClO-/GSH couple, which realizes mapping of the localized redox status of the ALI by the virtue of a PA imaging system. Therefore, the probe provides a potentially technical tool to understand redox imbalance-related pathological formation processes.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Glutatión/metabolismo , Imagen Óptica/métodos , Oxidación-Reducción
6.
Anal Chem ; 94(27): 9697-9705, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35767885

RESUMEN

Acute kidney injury (AKI) has become a growing issue for patients with the extensive use of all kinds of drugs in clinic. Photoacoustic (PA) imaging provides a noninvasive and real-time imaging method for studying kidney injury, but it has inherent shortages in terms of high background signal and low detection sensitivity for exogenous imaging agents. Intriguingly, J-aggregation offers to tune the optical properties of the dyes, thus providing a platform for developing new PA probes with desired performance. In this study, a small-molecule PA probe (BDP-3) was designed and synthesized. We serendipitously discovered that BDP-3 can transform into renal clearable nanoaggregates under physiological conditions. The hydrodynamic diameter of the BDP-3 increased from 0.64 ± 0.11 to 3.74 ± 0.39 nm when the content of H2O increased from 40 to 90%. In addition, it was surprising that such a transforming process can significantly enhance its PA amplitude (2.06-fold). On this basis, PA imaging with BDP-3 was applied as a new method for the noninvasive detection of AKI induced by anticancer drugs, traditional Chinese medicine, and clinical contrast agents in animal models and exhibited higher sensitivity than the conventional serum index test, demonstrating great potential for further clinical diagnostic applications.


Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Técnicas Fotoacústicas , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico por imagen , Animales , Medios de Contraste , Diagnóstico por Imagen , Técnicas Fotoacústicas/métodos
7.
Mikrochim Acta ; 189(8): 304, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915355

RESUMEN

Identifying the progress of kidney injury may aid the effective treatment and intervention. Herein, we developed a fluorescent biosensor array for instantaneous and accurate identification of the kidney injury progression via "doubled" signals. The multichannel biosensor array consisted of polydopamine-polyethyleneimine (PDA-PEI) and multicolor-labelled different length of DNAs including AAAAA-Cyanine7 (5A-Cy7), AAAAAAAAAA-Texas Red (10A-Texas Red), and AAAAAAAAAAAAAAAAAAAA-VIC (20A-VIC). Facing to the variety of protein in urine with alterable charge accompanied with different progress of kidney injury, the composition of urine replaces the DNA signal molecules, forming their special fluorescence patterns. Taking the size of protein into consideration, the original three variables induced by the protein charge were extended to six variables induced by the two factors of protein particle size and charge difference, which could provide a more accurate strategy to identify the progress of kidney injury. Notably, this strategy not only opened up new perspective for identification the progress of kidney injury via the size and charge of urine protein, but also improved the resolving power of sensor array by increasing the number of sensor elements for extending their potential application to various diseases.


Asunto(s)
Técnicas Biosensibles , Colorantes Fluorescentes , Riñón , Polietileneimina , Proteínas
8.
J Am Chem Soc ; 142(44): 18990-18996, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33089998

RESUMEN

Linearly conjugated systems have long served as an archetype of conjugated materials, but suffer from two intrinsic structural problems: potential instability due to intermolecular interactions and the flexibility of the C-C bonds connecting C═C bonds. Efforts to solve these problems have included the insertion of aromatic units as a part of the conjugation and the introduction of carbon bridges to stop the bond rotation. We report here B/N-doped p-arylenevinylene chromophores synthesized through the incorporation of a cyclopenta[c][1,2]azaborole framework as a part of the conjugated system. The ring strain intrinsic to this new skeleton both flattens and rigidifies the conjugation, and the B--N+ dative bond is much easier to form than a C-C bond, which simplifies the synthetic design. The B-N dative bond also reduces the HOMO-LUMO gap, thereby causing a significant redshift of the absorption and emission compared with their all-carbon congeners while retaining high photostability and high fluorescence quantum yield in both solution and film states. A doubly B/N-doped compound showed emission peaks at 540 nm with a small Stokes shift of 20 nm and a fluorescence quantum yield of 98%. The molecules serve as excellent lipophilic fluorescent dyes for live-cell imaging, showing a higher photostability than that of commercially available BODIPY-based dyes.

9.
Analyst ; 145(10): 3620-3625, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32338259

RESUMEN

Early detection of acute kidney injury (AKI) is important, as early intervention and treatment can prevent further kidney injury and improve kidney health. Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as the earliest and promising non-invasive biomarker of AKI in urine, and has been used as a new predictive biomarker of AKI in the bench-to-bedside journey. In this work, a nanocomplex composed of a polydopamine nanosphere (PDANS) and a fluorophore-labelled aptamer has been constructed for the detection of NGAL using a DNase I-assisted recycling amplification strategy. After the addition of NGAL, the fluorescence intensity increases linearly over the NGAL concentration range from 12.5 to 400 pg mL-1. The limit of detection of this strategy is found to be 6.25 pg mL-1, which is almost 5 times lower than that of the method that does not involve DNase I. The process can be completed within 1 h, indicating a fast fluorescence response. Furthermore, the method using the nanocomplex coupled with DNase I has been successfully utilized for the detection of NGAL in the urine from cisplatin-induced AKI and five-sixths nephrectomized mice, demonstrating its promising ability for the early prediction of AKI. This method also demonstrates the protective effect of the Huangkui capsule on AKI, and provides an effective way to screen potentially protective drugs for renal disease.


Asunto(s)
Lesión Renal Aguda/diagnóstico , Aptámeros de Nucleótidos/metabolismo , Desoxirribonucleasa I/metabolismo , Indoles/química , Límite de Detección , Lipocalina 2/metabolismo , Nanosferas/química , Polímeros/química , Aptámeros de Nucleótidos/genética , Línea Celular , Humanos , Técnicas de Amplificación de Ácido Nucleico , Factores de Tiempo
10.
Anal Chem ; 91(10): 6585-6592, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30994329

RESUMEN

Development of a highly selective and sensitive imaging probe for accurate detection of myocardial hypoxia will be helpful to estimate the degree of ischemia and subsequently guide personalized treatment. However, an efficient optical approach for hypoxia monitoring in myocardial ischemia is still lacking. In this work, a cardiomyocyte-specific and nitroreductase-activatable near-infrared nanoprobe has been developed for selective and sensitive imaging of myocardial hypoxia. The nanoprobe is a liposome-based nanoarchitecture which is functionalized with a peptide (GGGGDRVYIHPF) for targeting heart cells and encapsulating a nitrobenzene-substituted BODIPY for nitroreductase imaging. The nanoprobe can specifically recognize and bind to angiotensin II type 1 receptor that is overexpressed on the ischemic heart cells by the peptide and is subsequently uptaken into heart cells, in which the probe is released and activated by hypoxia-related nitroreductase to produce fluorescence emission at 713 nm. The in vitro response of the nanoprobe toward nitroreductase resulted in 55-fold fluorescence enhancement with the limit of detection as low as 7.08 ng/mL. Confocal fluorescence imaging confirmed the successful uptake of nanoprobe by hypoxic heart cells and intracellular detection of nitroreductase. More significantly, in vivo imaging of hypoxia in a murine model of myocardial ischemia was achieved by the nanoprobe with high sensitivity and good biocompatibility. Therefore, this work presents a new tool for targeted detection of myocardial hypoxia and will promote the investigation of the hypoxia-related physiological and pathological process of ischemic heart disease.


Asunto(s)
Compuestos de Boro/química , Colorantes Fluorescentes/química , Hipoxia/diagnóstico por imagen , Isquemia Miocárdica/diagnóstico por imagen , Nitrorreductasas/análisis , Animales , Compuestos de Boro/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Portadores de Fármacos/toxicidad , Colorantes Fluorescentes/toxicidad , Límite de Detección , Liposomas/química , Liposomas/toxicidad , Masculino , Ratones Endogámicos ICR , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Péptidos/química , Péptidos/metabolismo , Péptidos/toxicidad , Ratas , Receptor de Angiotensina Tipo 1/metabolismo
11.
Anal Chem ; 91(12): 7850-7857, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31117411

RESUMEN

For the precise treatment of tumors, it is necessary to develop a theranostic nanoplatform that has both diagnostic and therapeutic functions. In this article, we designed a new theranostic probe for fluorescence imaging of Zn2+ and fluorescence/MRI guided magnetically targeted photodynamic-photothermal therapy. The fluorescence imaging of Zn2+ was based on an endogenous ATP-driven DNA nanomachine that could perform repetitive stand displacement reaction. It modifies all units on a single PDA/Fe3O4 nanoparticle containing a hairpin-locked initiated strand activated by a target molecule in cells, a two-stranded fuel DNA triggered by ATP, and a two-stranded DNA track responding to an initiated strand and fuel DNA. After entering the cell, the intracellular target Zn2+ initiates the nanomachine via an autocatalytic cleavage reaction, and the machine programmatically and gradually runs on the assembled DNA track via fuel DNA driving and the intramolecular toehold-mediated stand displacement reaction. The Fe3O4 core first exhibits magnetic targeting, increasing the ability of nanoparticles to enter tumor cells at the tumor site. The Fe3O4 could also be employed as a powerful magnetic resonance imaging (MRI) contrast agent and guided therapy. Using 808 nm laser and 635 nm laser irradiation together at the tumor site, the PDA nanoshell produced an excellent photothermal effect and the TMPyP4 molecules entering the cell generated reactive oxygen species, followed by cell damage. A series of reliable experiments suggested that the Fe3O4@PDA@DNA nanoprobe showed superior fluorescence specificity, MRI, a remarkable photothermal/photodynamic therapy effect, and favorable biocompatibility. This theranostic nanoplatform offered a split-new insight into tumor fluorescence and MRI diagnosis as well as effective tumor therapy.


Asunto(s)
ADN/química , Óxido Ferrosoférrico/química , Indoles/química , Imagen por Resonancia Magnética , Imagen Óptica , Fotoquimioterapia/métodos , Polímeros/química , Zinc/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Estudios de Factibilidad , Humanos , Espacio Intracelular/metabolismo , Células MCF-7 , Ratones , Nanomedicina Teranóstica
12.
Analyst ; 144(24): 7178-7184, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31647062

RESUMEN

The detection of specific extracellular microRNAs (miRNAs) is beneficial for the prediction of drug-induced kidney injury. Here, a novel hairpin DNA-fueled nanoflare was developed for the simultaneous detection of drug-induced nephrotoxicity-related miRNA-21 and miRNA-200c with target catalytic recycling amplification. The nanoflare utilized gold nanoparticles (AuNPs) as the highly efficient quencher to ensure a low background signal. With the help of the fueled hairpin DNA, the miRNA targets could serve as the catalysts for the assembly of DNA duplexes. Therefore, the nanoflare could respond to the miRNAs to yield signal outputs of 1 : n (target : signal) rather than an equivalent reaction ratio of 1 : 1, achieving the signal amplified detection of low-abundant miRNAs. The targets can be concurrently detected with the detection limit of 18.1 and 21.1 pM for miRNA-21 and miRNA-200c, respectively, which are approximately 2 orders of magnitude lower than that of the non-catalytic probes. In addition, this nanoflare offered a high selectivity for determination between perfectly matched targets and single-base mismatched targets. It should be noted that the nanoflare was successfully employed to predict the drug-induced nephrotoxicity by the detection of miRNAs in culture media excreted from the drug-treated renal cells using a fluorescent microplate reader. Our hairpin DNA-fueled nanoflare could also accurately detect the divergence of miRNA-21 and miRNA-200c between drug-treated nephrotoxic cells and tumor cells, demonstrating a promising potential for exploring the pathogenesis of drugs and auxiliary diagnosis of drug-induced nephrotoxicity.


Asunto(s)
ADN/química , Enfermedades Renales/diagnóstico , Nanopartículas del Metal/química , MicroARNs/análisis , Biomarcadores/análisis , Carbocianinas/química , Catálisis , ADN/genética , Células Epiteliales/efectos de los fármacos , Fluoresceínas/química , Colorantes Fluorescentes/química , Oro/química , Humanos , Secuencias Invertidas Repetidas , Enfermedades Renales/inducido químicamente , Túbulos Renales Proximales/citología , Límite de Detección , MicroARNs/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico , Espectrometría de Fluorescencia/métodos
13.
Anal Chem ; 90(5): 3556-3562, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29443497

RESUMEN

The development of well-designed nanoprobes for specific imaging of multiple biomarkers in renal cells will afford beneficial information related to the transmutation process of drug-induced kidney injury (DIKI). However, the most reported nanoprobes for DIKI detection were dependent on single-signal output and lack of kidney targeting. In this work, we reported a renal cell targeting and dual-signal nanoprobe by encapsulating Brite 670 and Dabcyl-KFFFDEVDK-FAM into a low molecular weight chitosan nanoparticle. Confocal fluorescence imaging results demonstrated that the nanoprobe could visualize the upregulation of hydroxyl radical in early stage and activation of caspase-3 in late stage of DIKI at both the renal cell and tissue level. In a mouse DIKI model, the positive time of 8 h using nanoprobe imaging was superior to that of 72 h for serum creatinine or blood urea nitrogen, 16 h for cystatin-C, and 24 h for kidney injury molecule-1 with conventional methods. These results demonstrated that the nanoprobe may be a promising tool for effective early prediction and discriminative imaging of DIKI.


Asunto(s)
Caspasa 3/análisis , Colorantes Fluorescentes/química , Radical Hidroxilo/análisis , Nanopartículas/química , Insuficiencia Renal/inducido químicamente , Insuficiencia Renal/diagnóstico por imagen , p-Dimetilaminoazobenceno/análogos & derivados , Animales , Línea Celular , Quitosano/química , Ratones , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Péptidos/química , Ratas , p-Dimetilaminoazobenceno/química
14.
J Am Chem Soc ; 137(4): 1539-47, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25574812

RESUMEN

The low selectivity of currently available photosensitizers, which causes the treatment-related toxicity and side effects on adjacent normal tissues, is a major limitation for clinical photodynamic therapy (PDT) against cancer. Moreover, since PDT process is strongly oxygen dependent, its therapeutic effect is seriously hindered in hypoxic tumor cells. To overcome these problems, a cell-specific, H(2)O(2)-activatable, and O(2)-evolving PDT nanoparticle (HAOP NP) is developed for highly selective and efficient cancer treatment. The nanoparticle is composed of photosensitizer and catalase in the aqueous core, black hole quencher in the polymeric shell, and functionalized with a tumor targeting ligand c(RGDfK). Once HAOP NP is selectively taken up by α(v)ß(3) integrin-rich tumor cells, the intracellular H(2)O(2) penetrates the shell into the core and is catalyzed by catalase to generate O(2), leading to the shell rupture and release of photosensitizer. Under irradiation, the released photosensitizer induces the formation of cytotoxic singlet oxygen ((1)O(2)) in the presence of O(2) to kill cancer cells. The cell-specific and H(2)O(2)-activatable generation of (1)O(2) selectively destroys cancer cells and prevents the damage to normal cells. More significantly, HAOP NP continuously generates O(2) in PDT process, which greatly improves the PDT efficacy in hypoxic tumor. Therefore, this work presents a new paradigm for H(2)O(2)-triggered PDT against cancer cells and provides a new avenue for overcoming hypoxia to achieve effective treatment of solid tumors.

15.
Anal Chem ; 87(7): 3841-8, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25739838

RESUMEN

The integration of diagnostic and therapeutic functions in a single system holds great promise to enhance the theranostic efficacy and prevent the under- or overtreatment. Herein, a folate receptor-targeted and cathepsin B-activatable nanoprobe is designed for background-free cancer imaging and selective therapy. The nanoprobe is prepared by noncovalently assembling phospholipid-poly(ethylene oxide) modified folate and photosensitizer-labeled peptide on the surface of graphene oxide. After selective uptake of the nanoprobe into lysosome of cancer cells via folate receptor-mediated endocytosis, the peptide can be cleaved to release the photosensitizer in the presence of cancer-associated cathepsin B, which leads to 18-fold fluorescence enhancement for cancer discrimination and specific detection of intracellular cathepsin B. Under irradiation, the released photosensitizer induces the formation of cytotoxic singlet oxygen for triggering photosensitive lysosomal cell death. After lysosomal destruction, the lighted photosensitizer diffuses from lysosome into cytoplasm, which provides a visible method for in situ monitoring of therapeutic efficacy. The nanoprobe exhibits negligible dark toxicity and high phototoxicity with the cell mortality rate of 0.06% and 72.1%, respectively, and the latter is specific to folate receptor-positive cancer cells. Therefore, this work provides a simple but powerful protocol with great potential in precise cancer imaging, therapy, and therapeutic monitoring.


Asunto(s)
Catepsina B/metabolismo , Transportadores de Ácido Fólico/metabolismo , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Endocitosis , Células HeLa , Humanos , Células KB , Lisosomas/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Procesos Fotoquímicos/efectos de la radiación , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete/metabolismo
16.
J Am Chem Soc ; 136(27): 9598-607, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24927223

RESUMEN

Porphodilactones represent the porphyrin analogues, in which the peripheral bonds of two pyrrole rings are replaced by lactone moieties. They provide an opportunity to investigate how ß-substituent orientation of porphyrinoids modulates the electronic structures and optical properties, in a manner similar to what is observed with naturally occurring chlorophylls. In this work, a comprehensive description of the synthesis, characterization, and optical properties of meso-tetrakispentafluorophenylporphodilactone isomers is first reported. The ß-dilactone moieties are found to lie at opposite pyrrole positions (trans- and cis-configurations are defined by the relative orientations of the carbonyl group when one lactone moiety is fixed), in accordance with earlier computational predictions (Gouterman, M. J. Am. Chem. Soc. 1989, 111, 3702). The relative orientation of the ß-dilactone moieties has a significant influence on the electronic structures and photophysical properties. For example, the Qy band of trans-porphodilactone is red-shifted by 19 nm relative to that of the cis-isomer, and there is a 2-fold increase in the absorption intensity, which resembles the similar trends that have been reported for natural chlorophyll f and d. An in depth analysis of magnetic circular dichroism spectral data and TD-DFT calculations at the B3LYP/6-31G(d) level of theory demonstrates that the trans- and cis-orientations of the dilactone moieties have a significant effect on the relative energies of the frontier π-molecular orbitals. Importantly, the biological behaviors of the isomers reveal their different photocytotoxicity in NIR region (>650 nm). The influence of the relative orientation of the ß-substituents on the optical properties in this context provides new insights into the electronic structures of porphyrinoids which could prove useful during the development of near-infrared absorbing photosensitizers.


Asunto(s)
Clorofila/farmacología , Lactonas/farmacología , Rayos Láser , Compuestos Organometálicos/farmacología , Fármacos Fotosensibilizantes/farmacología , Absorción Fisicoquímica , Muerte Celular/efectos de los fármacos , Clorofila/análogos & derivados , Clorofila/química , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Lactonas/síntesis química , Lactonas/química , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Teoría Cuántica , Relación Estructura-Actividad
17.
Angew Chem Int Ed Engl ; 53(36): 9544-9, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25045069

RESUMEN

Simultaneous targeted cancer imaging, therapy and real-time therapeutic monitoring can prevent over- or undertreatment. This work describes the design of a multifunctional nanomicelle for recognition and precise near-infrared (NIR) cancer therapy. The nanomicelle encapsulates a new pH-activatable fluorescent probe and a robust NIR photosensitizer, R16FP, and is functionalized with a newly screened cancer-specific aptamer for targeting viable cancer cells. The fluorescent probe can light up the lysosomes for real-time imaging. Upon NIR irradiation, R16FP-mediated generation of reactive oxygen species causes lysosomal destruction and subsequently trigger lysosomal cell death. Meanwhile the fluorescent probe can reflect the cellular status and in situ visualize the treatment process. This protocol can provide molecular information for precise therapy and therapeutic monitoring.


Asunto(s)
Aptámeros de Péptidos/uso terapéutico , Rayos Infrarrojos/uso terapéutico , Neoplasias/diagnóstico , Neoplasias/radioterapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Aptámeros de Péptidos/síntesis química , Compuestos de Boro , Línea Celular Tumoral , Diagnóstico por Imagen , Colorantes Fluorescentes , Humanos , Concentración de Iones de Hidrógeno , Lisosomas/patología , Ratones , Micelas , Monitoreo Fisiológico , Nanopartículas , Especies Reactivas de Oxígeno/química
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124933, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39121677

RESUMEN

A large number of studies have shown that lysosomal microcircumstances changes can affect many physiological and pathological processes at the cellular level. However, the visual detection of lysosomal microcircumstances is relatively difficult due to low pH (4.5-6.0) value in lysosomal that require the probe not only stable under acidic condition but also has a good localization effect to lysosomal. Obviously, novel fluorescent which possessed both acidic stability and lysosomal-target property together with lysosomal viscosity active is highly demanded. Herein, a novel BODIPY molecular CarBDP based on carbazole group was rationally designed and synthesized for the lysosomal imaging. CarBDP exhibited AIE feature with a large Stokes shift of up to 157 nm. More importantly, co-localization assay of the CarBDP-treated MCF-7 cells indicated that CarBDP has a good localization effect on lysosomal (Rr = 0.7109) due to the carbazole group while the normal BODIPY that without carbazole group (PhBDP) shows poor localization performance, this was the first time that a small molecule can locate lysosomes only based on carbazole group. CarBDP exhibits strong solid emission with long fluorescence decay lifetime (τ = 44.54 ns) and was stable under acid condition.The probe CarBDP assembled with carbazole group was successfully utilized for lysosomal localization and mapping lysosomal viscosity in live cells, which provides a novel candidate tool for the determination of lysosomal microcircumstances.


Asunto(s)
Compuestos de Boro , Carbazoles , Colorantes Fluorescentes , Lisosomas , Lisosomas/metabolismo , Lisosomas/química , Humanos , Compuestos de Boro/química , Carbazoles/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Células MCF-7 , Espectrometría de Fluorescencia , Imagen Óptica , Concentración de Iones de Hidrógeno
19.
Adv Mater ; 36(18): e2311397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38221651

RESUMEN

Acute kidney injury (AKI) has become an increasing concern for patients due to the widespread clinical use of nephrotoxic drugs. Currently, the early diagnosis of AKI is still challenging and the available therapeutic drugs cannot meet the clinical demand. Herein, this work has investigated the key redox couple involved in AKI and develops a tailored photoacoustic (PA) imaging probe (AB-DiOH) which can reversibly respond to hypochlorite (ClO-)/glutathione (GSH) with high specificity and sensitivity. This probe enables the real-time monitoring of AKI by noninvasive PA imaging, with better detection sensitivity than the blood test. Furthermore, this probe is utilized for screening nephroprotective drugs among natural products. For the first time, astragalin is discovered to be a potential new drug for the treatment of AKI. After oral administration, astragalin can be efficiently absorbed by the animal body, alleviate kidney injury, and meanwhile induce no damage to other normal tissues. The treatment mechanism of astragalin has also been revealed to be the simultaneous inhibition of oxidative stress, ferroptosis, and cuproposis. The developed PA imaging probe and the discovered drug candidate provide a promising new tool and strategy for the early diagnosis and effective treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Lesión Renal Aguda/diagnóstico por imagen , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/diagnóstico , Animales , Ratones , Estrés Oxidativo/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Humanos , Ácido Hipocloroso/metabolismo , Glutatión/metabolismo , Glutatión/química , Quempferoles/química , Quempferoles/farmacología , Riñón/diagnóstico por imagen , Riñón/metabolismo , Descubrimiento de Drogas
20.
RSC Adv ; 14(38): 27703-27711, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39224649

RESUMEN

Chemodynamic therapy, leveraging metabolic processes for reactive oxygen species (ROS) generation, shows promise in cancer eradication. However, its efficacy is hampered by hypoxic conditions, substrate scarcity, and abundant ROS scavengers. In this study, we have devised a cubic manganese oxide nanozyme (BSA-AuNC-MnO2@DHA) to tackle these obstacles. This nanozyme integrates MnO2 with bovine serum albumin (BSA)-coated gold nanoclusters (AuNC), forming BSA-AuNC-MnO2, and further incorporates dihydroartemisinin (DHA) to confer both bioimaging and anticancer capabilities. The BSA-AuNC-MnO2 nanoparticles exhibit a uniform cubic morphology, with an average hydrated particle diameter of 76.4 ± 7.1 nm and a zeta potential of -32.6 mV, indicative of their excellent dispersion and stability. The encapsulation efficiency of DHA within the BSA-AuNC-MnO2@DHA system achieved a remarkable value of 72.45%, attesting to its substantial drug-loading capacity. MnO2 serves a dual function within the nanozyme: it augments oxidative stress while concurrently inhibiting antioxidant defenses. It depletes the antioxidant glutathione (GSH) to release Mn2+, which in turn catalyzes ROS production from intracellular substrates and DHA. The remarkable anticancer efficacy of this tailored approach is evidenced by the potent inhibition of tumor growth observed after a single-dose administration, which underscores the amplification of oxidative stress. Additionally, BSA-AuNC-MnO2@DHA exhibits negligible toxicity to major organs, highlighting its exceptional biocompatibility and safety profile.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA