Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mater Horiz ; 10(12): 5835-5846, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37843469

RESUMEN

Polymer dielectric materials with excellent temperature stability are urgently needed for the ever-increasing energy storage requirements under harsh high-temperature conditions. In this work, a novel diamine monomer (bis(2-cyano-4-aminophenyl)amine) was successfully synthesized to prepare a series of cyano-containing polyimides (CPI-1-3), which possessed excellent dielectric properties and high thermostability. The maximum dielectric permittivity was up to 5.5 at 102 Hz for CPI-3, being 2.5 times higher than that of commercially used BOPP. In comparison, the CPI-1 exhibited an outstanding breakdown strength of 433 MV m-1 and a high energy density of 2.5 J cm-3 even at 250 °C, which was the highest value reported under the same conditions. The synthesized CPIs through such an intrinsic approach are potential candidate materials for energy storage and even other applications under simultaneously harsh electrical and thermal conditions.

2.
J Food Prot ; 83(9): 1641-1648, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32866242

RESUMEN

ABSTRACT: This study optimized the method for ozone (O3) degradation of prometryn in the clam Ruditapes philippinarum and evaluated toxicity changes during ozone degradation. The gas chromatography method for the detection of prometryn was appropriately improved. The linear range was 5 to 500 ng/mL, with a correlation coefficient of 0.9964. The addition concentration of prometryn was 0.025 to 0.100 mg/kg, the recovery was 77.97 to 85.00%, the relative standard deviation (n = 6) was 2.36 to 7.86%, and the limit of detection was 0.3 µg/kg. Using the central composite design in two experiments, ozone as gas and ozone dissolved in water, the effect of degradation rate was studied on three variables: ozone concentration, temperature, and exposure time. Ozone as gas and ozone dissolved in water have the same degradation effect on prometryn. The O3 concentration was 4.2 mg/L, the temperature was 40°C, the exposure time was 10 min, and the maximum degradation rate was 89.94 and 89.69% for the two experiments, respectively. In addition, the toxicity of ozone degradation products was evaluated using buffalo rat liver cells. After ozone treatment for 30 min, the toxicity of the ozone degradation products was reduced to 52.15% compared with that of prometryn itself. The toxicity of the ozone degradation products increased slightly when the ozonation time was prolonged; the toxicity at 180 min was greater than that of the parent compound prometryn. Overall, the application of ozone degradation of pesticide residues is a promising new technology. This study determined better degradation conditions for prometryn in R. philippinarum and also provided a theoretical basis for the widespread use of ozone technology in the future.


Asunto(s)
Bivalvos , Ozono , Contaminantes Químicos del Agua , Animales , Oxidación-Reducción , Prometrina , Contaminantes Químicos del Agua/análisis
3.
Chemosphere ; 248: 126018, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32035384

RESUMEN

In recent years, prometryn was utilized as watergrass remover in the aquaculture industry, resulting in the accumulated residual in the aquatic products. The present study focuses on the ozone degradation of prometryn in the Ruditapes philippinarum. The ozone concentration in water increased along with the injection time (60min). The contents of hydroxyl (·OH) and superoxide (O2·-) radicals increased along with the ozone injection time. The effects of temperature, pH, prometryn initial concentration and ozone concentration on the removal efficiency of prometryn were evaluated. The maximum removal efficiency of 86.12% was obtained under the conditions of pH 7, prometryn initial concentration 0.05 mg/kg and the ozone concentration 4.2 mg/L at 28 °C for 30 min. Ion chromatography (IC) and Fourier transform infrared (FT-IR) spectroscopy results show that the S and N atoms in the outer layer of the triazine ring during the prometryn degradation process were oxidized and removed. A total of 30 intermediate compounds were identified using the gas chromatography-mass spectrometry (GC-MS) method. Combined with the IC and FT-IR results, three possible degradation pathways of prometryn were proposed. The prometryn was finally degraded into some small molecules with reduced toxicity by 63.16% for 120 min ozonization treatment. Overall, our work provides a novel approach for prometryn degradation in Ruditapes philippinarum, which can be extended for removing the residues of agricultural and veterinary drugs in other aquatic products.


Asunto(s)
Bivalvos/metabolismo , Ozono/química , Prometrina/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Cromatografía de Gases y Espectrometría de Masas , Concentración de Iones de Hidrógeno , Radical Hidroxilo/química , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier , Agua , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA