RESUMEN
Gut microbiota dysbiosis plays a crucial role in the occurrence and progression of nonalcoholic fatty liver disease (NAFLD), which may be influenced by nutritional supplementation. Quinoa, a type of pseudocereal, has gained prominence due to its high nutritional value and diverse applications. This study aimed to determine whether yogurt containing quinoa can ameliorate NAFLD and alleviate metabolic disorders by protecting against the divergence of gut microbiota. Our findings suggested that quinoa yogurt could significantly reduce the body weight gain and fat tissue weight of high-fat diet (HFD)-fed obese mice. In addition, quinoa yogurt significantly reduced liver steatosis and enhanced glucose homeostasis and insulin sensitivity. Additional research indicates that quinoa yogurt can reduce the levels of proinflammatory cytokines (i.e., tumor necrosis factor α, IL-1ß, and IL-6) and inhibit endotoxemia and systemic inflammation. The characteristics of the gut microbiota were then determined by analyzing 16S rRNA. In addition, we discovered that the gut microbiota was disturbed by HFD consumption. Particularly, intestinal probiotics and beneficial intestinal secretions were increased, leading to the expression of glucagon-like peptide-1 in the colon, contributing to NAFLD. Furthermore, endotoxemia and systemic inflammation in HFD-fed mice were restored to the level of control mice when they were fed yogurt and quinoa. Therefore, yogurt containing quinoa can effectively alleviate NAFLD symptoms and may exert its effects via microbiome-gut-liver axis mechanisms. According to some research, the role of the enteric-liver axis may also influence metabolic disorders to reduce the development of NAFLD.
Asunto(s)
Chenopodium quinoa , Endotoxemia , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/veterinaria , Dieta Alta en Grasa , Endotoxemia/veterinaria , Yogur , ARN Ribosómico 16S/metabolismo , Hígado/metabolismo , Inflamación/metabolismo , Inflamación/veterinaria , Ratones Endogámicos C57BLRESUMEN
BACKGROUND AND PURPOSE: L. monocytogenes remain a leading cause of foodborne infection. Listeriolysin O (LLO), an indispensable virulence determinant involved in diverse pathogenic mechanisms of L. monocytogenes infection, represents a promising therapeutic target. In this study, we sought to identify an effective inhibitor of LLO pore formation and its mechanism of action in the treatment of L. monocytogenes infection. EXPERIMENTAL APPROACH: Haemolysis assays were carried out to screen an effective LLO inhibitor. The interaction between candidate and LLO was investigated using surface plasmon resonance and molecular docking. The effect of candidate on LLO-mediated cytotoxicity, barrier disruption and immune response were investigated. Finally, the in vivo effect of candidate on mice challenged with L. monocytogenes was examined. KEY RESULTS: Amentoflavone, a natural flavone present in traditional Chinese herbs, effectively inhibited LLO pore formation by engaging the residues Lys93, Asp416, Tyr469 and Lys505 in LLO. Amentoflavone dose-dependently reduced L. monocytogenes-induced cell injury in an LLO-dependent manner. In the Caco-2 monolayer model, amentoflavone maintained the integrity of the epithelial barrier exposed to LLO. Amentoflavone inhibited the inflammatory response evoked by L. monocytogenes in an LLO-dependent manner, and inhibition was attributed to ability to block perforation-associated K+ efflux and Ca2+ influx. In the mouse infection model, amentoflavone treatment significantly reduced bacterial burden and pathological lesions in target organs, with a significant increase in survival rate. CONCLUSIONS AND IMPLICATIONS: Amentoflavone reduced the pathogenicity of L. monocytogenes by specifically inhibiting LLO pore formation, and this may represent a potential treatment for L. monocytogenes infection.