Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Biol Sci ; 290(1996): 20222548, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37040802

RESUMEN

Local coexistence of bees has been explained by flower resource partitioning, but coexisting bumblebee species often have strongly overlapping diets. We investigated if light microhabitat niche separation, underpinned by visual traits, could serve as an alternative mechanism underlying local coexistence of bumblebee species. To this end, we focused on a homogeneous flower resource-bilberry-in a heterogeneous light environment-hemi-boreal forests. We found that bumblebee communities segregated along a gradient of light intensity. The community-weighted mean of the eye parameter-a metric measuring the compromise between light sensitivity and visual resolution-decreased with light intensity, showing a higher investment in light sensitivity of communities observed in darker conditions. This pattern was consistent at the species level. In general, species with higher eye parameter (larger investment in light sensitivity) foraged in dimmer light than those with a lower eye parameter (higher investment in visual resolution). Moreover, species realized niche optimum was linearly related to their eye parameter. These results suggest microhabitat niche partitioning to be a potential mechanism underpinning bumblebee species coexistence. This study highlights the importance of considering sensory traits when studying pollinator habitat use and their ability to cope with changing environments.


Asunto(s)
Ecosistema , Fotofobia , Abejas , Animales , Flores , Taiga
2.
Artículo en Inglés | MEDLINE | ID: mdl-34738166

RESUMEN

Stingless bees are important pollinators in the tropics. The tremendous variation in body size makes them an excellent group to study how miniaturization affects vision and visual behaviours. Using direct measurements and micro-CT, we reconstructed the eye structure, estimated anatomical spatial resolution and optical sensitivity of the stingless bee Tetragonula iridipennis. T. iridipennis is similar in size to the Australian stingless bee Tetragonula carbonaria and is smaller than honeybees. It has correspondingly small eyes (area = 0.56 mm2), few ommatidia (2451 ± 127), large inter-facet (3.0 ± 0.6°) and acceptance angles (2.8°). Theoretical estimates suggest that T. iridipennis has poorer spatial resolution (0.17 cycles degree-1) than honeybees, bumblebees, and T. carbonaria. Its optical sensitivity (0.08 µm2 sr), though higher than expected, is within the range of diurnal bees. This may provide them with greater contrast sensitivity, which is likely more relevant than the absolute sensitivity in this diurnal bee. Behaviourally determined detection thresholds for single targets using y-maze experiments were 11.5° for targets that provide chromatic contrast alone and 9.1° for targets providing chromatic and achromatic contrast. Further studies into microhabitat preferences and behaviour are required to understand how miniaturization influences its visual ecology.


Asunto(s)
Visión Ocular , Animales , Australia , Abejas , Tamaño Corporal
3.
Proc Biol Sci ; 287(1921): 20192720, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32070252

RESUMEN

To land, flying animals must simultaneously reduce speed and control their path to the target. While the control of approach speed has been studied in many different animals, little is known about the effect of target size on landing, particularly for small targets that require precise trajectory control. To begin to explore this, we recorded the stingless bees Scaptotrigona depilis landing on their natural hive entrance-a narrow wax tube built by the bees themselves. Rather than decelerating before touchdown as most animals do, S. depilis accelerates in preparation for its high precision landings on the narrow tube of wax. A simulation of traffic at the hive suggests that this counterintuitive landing strategy could confer a collective advantage to the colony by minimizing the risk of mid-air collisions and thus of traffic congestion. If the simulated size of the hive entrance increases and if traffic intensity decreases relative to the measured real-world values, 'accelerated landing' ceases to provide a clear benefit, suggesting that it is only a useful strategy when target cross-section is small and landing traffic is high. We discuss this strategy in the context of S. depilis' ecology and propose that it is an adaptive behaviour that benefits foraging and nest defence.


Asunto(s)
Abejas , Conducta Animal , Animales
4.
Biol Lett ; 16(8): 20200437, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32842893

RESUMEN

Most flying animals rely primarily on visual cues to coordinate and control their trajectory when landing. Studies of visually guided landing typically involve animals that decrease their speed before touchdown. Here, we investigate the control strategy of the stingless bee Scaptotrigona depilis, which instead accelerates when landing on its narrow hive entrance. By presenting artificial targets that resemble the entrance at different locations on the hive, we show that these accelerated landings are triggered by visual cues. We also found that S. depilis initiated landing and extended their legs when the angular size of the target reached a given threshold. Regardless of target size, the magnitude of acceleration was the same and the bees aimed for the same relative position on the target suggesting that S. depilis use a computationally simple but elegant 'stereotyped' landing strategy that requires few visual cues.


Asunto(s)
Señales (Psicología) , Deportes , Animales , Abejas , Percepción Visual
5.
Proc Biol Sci ; 285(1877)2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695447

RESUMEN

Moving animal groups such as schools of fishes or flocks of birds often undergo sudden collective changes of their travelling direction as a consequence of stochastic fluctuations in heading of the individuals. However, the mechanisms by which these behavioural fluctuations arise at the individual level and propagate within a group are still unclear. In this study, we combine an experimental and theoretical approach to investigate spontaneous collective U-turns in groups of rummy-nose tetra (Hemigrammus rhodostomus) swimming in a ring-shaped tank. U-turns imply that fish switch their heading between the clockwise and anticlockwise direction. We reconstruct trajectories of individuals moving alone and in groups of different sizes. We show that the group decreases its swimming speed before a collective U-turn. This is in agreement with previous theoretical predictions showing that speed decrease facilitates an amplification of fluctuations in heading in the group, which can trigger U-turns. These collective U-turns are mostly initiated by individuals at the front of the group. Once an individual has initiated a U-turn, the new direction propagates through the group from front to back without amplification or dampening, resembling the dynamics of falling dominoes. The mean time between collective U-turns sharply increases as the size of the group increases. We develop an Ising spin model integrating anisotropic and asymmetrical interactions between fish and their tendency to follow the majority of their neighbours nonlinearly (social conformity). The model quantitatively reproduces key features of the dynamics and the frequency of collective U-turns observed in experiments.


Asunto(s)
Conducta Animal , Characidae/fisiología , Conducta Social , Natación , Animales , Difusión de la Información , Modelos Biológicos , Conformidad Social
6.
Ecol Evol ; 13(9): e10513, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701022

RESUMEN

Biological invasions represent a growing threat to islands and their biodiversity across the world. The isolated sub-Antarctic island of South Georgia in the South Atlantic Ocean is a highly protected area that relies on effective biosecurity including prevention, surveillance and eradication to limit the risk of biological invasions. Based on an opportunistic field discovery, we provide the first report of an introduced ladybird beetle on South Georgia. All specimens discovered belong to the Eurasian species Coccinella undecimpunctata Linnaeus (1758) (Coleoptera: Coccinellidae). Tens of individuals of both sexes were discovered at a single location, indicating that the species may already be established on South Georgia. Transport connectivity with this site suggests that the species most likely arrived recently from the Falkland Islands as a stowaway on a ship. We discuss the implications of our discovery for the continued development of South Atlantic biosecurity.

7.
BMC Zool ; 7(1): 10, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-37170292

RESUMEN

BACKGROUND: Understanding the diversity of eyes is crucial to unravel how different animals use vision to interact with their respective environments. To date, comparative studies of eye anatomy are scarce because they often involve time-consuming or inefficient methods. X-ray micro-tomography (micro-CT) is a promising high-throughput imaging technique that enables to reconstruct the 3D anatomy of eyes, but powerful tools are needed to perform fast conversions of anatomical reconstructions into functional eye models. RESULTS: We developed a computing method named InSegtCone to automatically segment the crystalline cones in the apposition compound eyes of arthropods. Here, we describe the full auto-segmentation process, showcase its application to three different insect compound eyes and evaluate its performance. The auto-segmentation could successfully label the full individual shapes of 60-80% of the crystalline cones and is about as accurate and 250 times faster than manual labelling of the individual cones. CONCLUSIONS: We believe that InSegtCone can be an important tool for peer scientists to measure the orientation, size and dynamics of crystalline cones, leading to the accurate optical modelling of the diversity of arthropod eyes with micro-CT.

8.
Curr Opin Insect Sci ; 42: 8-13, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32818691

RESUMEN

By combining functional, ecological and evolutionary perspectives, neuroecology can provide key insights into understanding how behaviour and the underlying sensory and neural processes are shaped by ecology and evolutionary history. Bees are an ideal system for neuroecological studies because they represent a numerous and diverse insect group that inhabit a broad range of environments. Flight is central to the evolutionary success of bees and is the key to their survival and fitness but this review of recent work on fundamental flight behaviours in different species - landing, collision avoidance and speed control - reveals striking differences. We discuss the potential ecological and evolutionary drivers behind this variation but argue that to understand their adaptive value future work should include multidisciplinary approaches that integrate neuroscience, ecology, phylogeny and behaviour.


Asunto(s)
Abejas/fisiología , Conducta Animal , Vuelo Animal/fisiología , Animales , Visión Ocular
9.
Vision Res ; 158: 100-108, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30826353

RESUMEN

Many insects have triplets of camera type eyes, called ocelli, whose function remains unclear for most species. Here, we investigate the ocelli of the bumblebee, Bombus terrestris, using reconstructed 3D data from X-ray microtomography scans combined with computational ray-tracing simulations. This method enables us, not only to predict the visual fields of the ocelli, but to explore for the first time the effect that hair has on them as well as the difference between worker female and male ocelli. We find that bumblebee ocellar fields of view are directed forward and dorsally, incorporating the horizon as well as the sky. There is substantial binocular overlap between the median and lateral ocelli, but no overlap between the two lateral ocelli. Hairs in both workers and males occlude the ocellar field of view, mostly laterally in the worker median ocellus and dorsally in the lateral ocelli. There is little to no sexual dimorphism in the ocellar visual field, suggesting that in B. terrestris they confer no advantage to mating strategies. We compare our results with published observations for the visual fields of compound eyes in the same species as well as with the ocellar vision of other bee and insect species.


Asunto(s)
Abejas/fisiología , Cabello/fisiología , Células Fotorreceptoras de Invertebrados/citología , Visión Ocular/fisiología , Campos Visuales/fisiología , Animales , Abejas/ultraestructura , Femenino , Masculino , Células Fotorreceptoras de Invertebrados/ultraestructura , Factores Sexuales , Microtomografía por Rayos X
10.
Elife ; 82019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30803484

RESUMEN

The quality of visual information that is available to an animal is limited by the size of its eyes. Differences in eye size can be observed even between closely related individuals, yet we understand little about how this affects vision. Insects are good models for exploring the effects of size on visual systems because many insect species exhibit size polymorphism. Previous work has been limited by difficulties in determining the 3D structure of eyes. We have developed a novel method based on x-ray microtomography to measure the 3D structure of insect eyes and to calculate predictions of their visual capabilities. We used our method to investigate visual allometry in the bumblebee Bombus terrestris and found that size affects specific aspects of vision, including binocular overlap, optical sensitivity, and dorsofrontal visual resolution. This reveals that differential scaling between eye areas provides flexibility that improves the visual capabilities of larger bumblebees.


Asunto(s)
Abejas/anatomía & histología , Entomología/métodos , Ojo/anatomía & histología , Visión Ocular , Microtomografía por Rayos X/métodos , Animales , Biometría/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA