Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(30): 17499-17509, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32690715

RESUMEN

Coping of evergreen conifers in boreal forests with freezing temperatures on bright winter days puts the photosynthetic machinery in great risk of oxidative damage. To survive harsh winter conditions, conifers have evolved a unique but poorly characterized photoprotection mechanism, a sustained form of nonphotochemical quenching (sustained NPQ). Here we focused on functional properties and underlying molecular mechanisms related to the development of sustained NPQ in Norway spruce (Picea abies). Data were collected during 4 consecutive years (2016 to 2019) from trees growing in sun and shade habitats. When day temperatures dropped below -4 °C, the specific N-terminally triply phosphorylated LHCB1 isoform (3p-LHCII) and phosphorylated PSBS (p-PSBS) could be detected in the thylakoid membrane. Development of sustained NPQ coincided with the highest level of 3p-LHCII and p-PSBS, occurring after prolonged coincidence of bright winter days and temperatures close to -10 °C. Artificial induction of both the sustained NPQ and recovery from naturally induced sustained NPQ provided information on differential dynamics and light-dependence of 3p-LHCII and p-PSBS accumulation as prerequisites for sustained NPQ. Data obtained collectively suggest three components related to sustained NPQ in spruce: 1) Freezing temperatures induce 3p-LHCII accumulation independently of light, which is suggested to initiate destacking of appressed thylakoid membranes due to increased electrostatic repulsion of adjacent membranes; 2) p-PSBS accumulation is both light- and temperature-dependent and closely linked to the initiation of sustained NPQ, which 3) in concert with PSII photoinhibition, is suggested to trigger sustained NPQ in spruce.


Asunto(s)
Fotosíntesis , Picea/fisiología , Estaciones del Año , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo , Secuencia de Aminoácidos , Ambiente , Complejos de Proteína Captadores de Luz/metabolismo , Noruega , Fosforilación , Espectrometría de Masas en Tándem , Proteínas de las Membranas de los Tilacoides/química , Árboles
2.
Plant Cell Environ ; 45(10): 2954-2971, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35916195

RESUMEN

Photosynthetic light reactions require strict regulation under dynamic environmental conditions. Still, depending on environmental constraints, photoinhibition of Photosystem (PSII) or PSI occurs frequently. Repair of photodamaged PSI, in sharp contrast to that of PSII, is extremely slow and leads to a functional imbalance between the photosystems. Slow PSI recovery prompted us to take advantage of the PSI-specific photoinhibition treatment and investigate whether the imbalance between functional PSII and PSI leads to acclimation of photosynthesis to PSI-limited conditions, either by short-term or long-term acclimation mechanisms as tested immediately after the photoinhibition treatment or after 24 h recovery in growth conditions, respectively. Short-term acclimation mechanisms were induced directly upon inhibition, including thylakoid protein phosphorylation that redirects excitation energy to PSI as well as changes in the feedback regulation of photosynthesis, which relaxed photosynthetic control and excitation energy quenching. Longer-term acclimation comprised reprogramming of the stromal redox system and an increase in ATP synthase and Cytochrome b6 f abundance. Acclimation to PSI-limited conditions restored the CO2 assimilation capacity of plants without major PSI repair. Response to PSI inhibition demonstrates that plants efficiently acclimate to changes occurring in the photosynthetic apparatus, which is likely a crucial component in plant acclimation to adverse environmental conditions.


Asunto(s)
Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Aclimatación , Transporte de Electrón , Luz , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Plantas/metabolismo , Tilacoides/metabolismo
3.
Plant J ; 97(6): 1061-1072, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30488561

RESUMEN

Natural growth environments commonly include fluctuating conditions that can disrupt the photosynthetic energy balance and induce photoinhibition through inactivation of the photosynthetic apparatus. Photosystem II (PSII) photoinhibition is efficiently reversed by the PSII repair cycle, whereas photoinhibited photosystem I (PSI) recovers much more slowly. In the current study, treatment of the Arabidopsis thaliana mutant proton gradient regulation 5 (pgr5) with excess light was used to compromise PSI functionality in order to investigate the impact of photoinhibition and subsequent recovery on photosynthesis and carbon metabolism. The negative impact of PSI photoinhibition on CO2 fixation was especially deleterious under low irradiance. Impaired starch accumulation after PSI photoinhibition was reflected in reduced respiration in the dark, but this was not attributed to impaired sugar synthesis. Normal chloroplast and mitochondrial metabolisms were shown to recover despite the persistence of substantial PSI photoinhibition for several days. The results of this study indicate that the recovery of PSI function involves the reorganization of the light-harvesting antennae, and suggest a pool of surplus PSI that can be recruited to support photosynthesis under demanding conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono , Cloroplastos/metabolismo , Luz , Mitocondrias/metabolismo , Mutación , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Almidón/metabolismo
4.
J Exp Bot ; 70(12): 3211-3225, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-30938447

RESUMEN

Pinaceae are the predominant photosynthetic species in boreal forests, but so far no detailed description of the protein components of the photosynthetic apparatus of these gymnosperms has been available. In this study we report a detailed characterization of the thylakoid photosynthetic machinery of Norway spruce (Picea abies (L.) Karst). We first customized a spruce thylakoid protein database from translated transcript sequences combined with existing protein sequences derived from gene models, which enabled reliable tandem mass spectrometry identification of P. abies thylakoid proteins from two-dimensional large pore blue-native/SDS-PAGE. This allowed a direct comparison of the two-dimensional protein map of thylakoid protein complexes from P. abies with the model angiosperm Arabidopsis thaliana. Although the subunit composition of P. abies core PSI and PSII complexes is largely similar to that of Arabidopsis, there was a high abundance of a smaller PSI subcomplex, closely resembling the assembly intermediate PSI* complex. In addition, the evolutionary distribution of light-harvesting complex (LHC) family members of Pinaceae was compared in silico with other land plants, revealing that P. abies and other Pinaceae (also Gnetaceae and Welwitschiaceae) have lost LHCB4, but retained LHCB8 (formerly called LHCB4.3). The findings reported here show the composition of the photosynthetic apparatus of P. abies and other Pinaceae members to be unique among land plants.


Asunto(s)
Fotosíntesis/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Picea/genética , Secuencia de Aminoácidos , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Filogenia , Picea/metabolismo , Alineación de Secuencia , Tilacoides/metabolismo
5.
Plant J ; 92(5): 951-962, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28980426

RESUMEN

Conversion of solar energy into chemical energy in plant chloroplasts concomitantly modifies the thylakoid architecture and hierarchical interactions between pigment-protein complexes. Here, the thylakoids were isolated from light-acclimated Arabidopsis leaves and investigated with respect to the composition of the thylakoid protein complexes and their association into higher molecular mass complexes, the largest one comprising both photosystems (PSII and PSI) and light-harvesting chlorophyll a/b-binding complexes (LHCII). Because the majority of plant light-harvesting capacity is accommodated in LHCII complexes, their structural interaction with photosystem core complexes is extremely important for efficient light harvesting. Specific differences in the strength of LHCII binding to PSII core complexes and the formation of PSII supercomplexes are well characterized. Yet, the role of loosely bound L-LHCII that disconnects to a large extent during the isolation of thylakoid protein complexes remains elusive. Because L-LHCII apparently has a flexible role in light harvesting and energy dissipation, depending on environmental conditions, its close interaction with photosystems is a prerequisite for successful light harvesting in vivo. Here, to reveal the labile and fragile light-dependent protein interactions in the thylakoid network, isolated membranes were subjected to sequential solubilization using detergents with differential solubilization capacity and applying strict quality control. Optimized 3D-lpBN-lpBN-sodium dodecyl sulfate-polyacrylamide gel electrophoresis system demonstrated that PSII-LHCII supercomplexes, together with PSI complexes, hierarchically form larger megacomplexes via interactions with L-LHCII trimers. The polypeptide composition of LHCII trimers and the phosphorylation of Lhcb1 and Lhcb2 were examined to determine the light-dependent supramolecular organization of the photosystems into megacomplexes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tilacoides/metabolismo , Clorofila/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteómica
6.
Photosynth Res ; 137(1): 129-140, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29357086

RESUMEN

We studied how high light causes photoinhibition of photosystem I (PSI) in the shade-demanding fern Nephrolepis falciformis, in an attempt to understand the mechanism of PSI photoinhibition under natural field conditions. Intact leaves were treated with constant high light and fluctuating light. Detached leaves were treated with constant high light in the presence and absence of methyl viologen (MV). Chlorophyll fluorescence and P700 signal were determined to estimate photoinhibition. PSI was highly oxidized under high light before treatments. N. falciformis showed significantly stronger photoinhibition of PSI and PSII under constant high light than fluctuating light. These results suggest that high levels of P700 oxidation ratio cannot prevent PSI photoinhibition under high light in N. falciformis. Furthermore, photoinhibition of PSI in N. falciformis was largely accelerated in the presence of MV that promotes the production of superoxide anion radicals in the chloroplast stroma by accepting electrons from PSI. From these results, we propose that photoinhibition of PSI in N. falciformis is mainly caused by superoxide radicals generated in the chloroplast stroma, which is different from the mechanism of PSI photoinhibition in Arabidopsis thaliana and spinach. Here, we provide some new insights into the PSI photoinhibition under natural field conditions.


Asunto(s)
Cloroplastos/metabolismo , Helechos/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Helechos/fisiología , Luz , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/metabolismo
7.
Physiol Plant ; 162(2): 156-161, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28815613

RESUMEN

Photosystem I (PSI) has evolved in anaerobic atmospheric conditions and until today remains susceptible to oxygen. To minimize the probability of damaging side reactions, plants have evolved sophisticated mechanisms to control electron transfer, and PSI becomes inhibited only when malfunctions of these regulatory mechanisms occur. Because of the complicated induction of PSI photoinhibition, a detailed investigation into the process and following reactions are still largely missing. Here, we introduce the theoretical framework and a novel method for an easy and controlled induction of PSI photoinhibition in vivo. The method mimics the PSI damage mechanisms of fluctuating light-sensitive mutant plants (stn7, pgr5) which cannot control electron donation to PSI. Because PSII and PSI have different light absorption properties, electrons accumulate in the intersystem electron transfer chain (ETC), if PSII is preferentially excited. A saturating light pulse given upon an over-reduced ETC leads to the saturation of PSI electron acceptors, ultimately leading to the production of reactive oxygen species and photoinhibition of PSI. By adjusting the time of the light treatment, PSI can be gradually photoinhibited, providing a novel tool to holistically investigate the PSI photoinhibition phenomenon.


Asunto(s)
Oxígeno/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transporte de Electrón/genética , Transporte de Electrón/efectos de la radiación , Luz , Mutación , Oxidación-Reducción/efectos de la radiación , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/genética , Plantas/genética
8.
Plant Physiol ; 172(1): 450-63, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27406169

RESUMEN

PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of PsaI destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated phosphorylation level of the LHCII under normal growth light conditions. Remarkably, LHCII was rapidly phosphorylated in ΔpsaI in darkness even after illumination with far-red light. We found that this dark phosphorylation also occurs in previously described mutants impaired in PSI function or state transition. A prompt shift of the plastoquinone (PQ) pool into a more reduced redox state in the dark caused an enhanced LHCII phosphorylation in ΔpsaI Since the redox status of the PQ pool is functionally connected to a series of physiological, biochemical, and gene expression reactions, we propose that the shift of mutant plants into state 2 in darkness represents a compensatory and/or protective metabolic mechanism. This involves an increased reduction and/or reduced oxidation of the PQ pool, presumably to sustain a balanced excitation of both photosystems upon the onset of light.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Nicotiana/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/metabolismo , Sitios de Unión/genética , Oscuridad , Transporte de Electrón/genética , Transporte de Electrón/efectos de la radiación , Immunoblotting , Luz , Complejos de Proteína Captadores de Luz/genética , Peso Molecular , Mutación , Oxidación-Reducción/efectos de la radiación , Fosforilación/efectos de la radiación , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plastoquinona/metabolismo , Unión Proteica , Nicotiana/genética , Nicotiana/efectos de la radiación
9.
Plant Cell ; 26(9): 3646-60, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25194026

RESUMEN

Photosynthetic light harvesting in plants is regulated by phosphorylation-driven state transitions: functional redistributions of the major trimeric light-harvesting complex II (LHCII) to balance the relative excitation of photosystem I and photosystem II. State transitions are driven by reversible LHCII phosphorylation by the STN7 kinase and PPH1/TAP38 phosphatase. LHCII trimers are composed of Lhcb1, Lhcb2, and Lhcb3 proteins in various trimeric configurations. Here, we show that despite their nearly identical amino acid composition, the functional roles of Lhcb1 and Lhcb2 are different but complementary. Arabidopsis thaliana plants lacking only Lhcb2 contain thylakoid protein complexes similar to wild-type plants, where Lhcb2 has been replaced by Lhcb1. However, these do not perform state transitions, so phosphorylation of Lhcb2 seems to be a critical step. In contrast, plants lacking Lhcb1 had a more profound antenna remodeling due to a decrease in the amount of LHCII trimers influencing thylakoid membrane structure and, more indirectly, state transitions. Although state transitions are also found in green algae, the detailed architecture of the extant seed plant light-harvesting antenna can now be dated back to a time after the divergence of the bryophyte and spermatophyte lineages, but before the split of the angiosperm and gymnosperm lineages more than 300 million years ago.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/ultraestructura , Clorofila A , Electroforesis en Gel de Poliacrilamida , Cinética , MicroARNs/metabolismo , Péptidos/metabolismo , Fenotipo , Fosforilación , Fotosíntesis , Unión Proteica , Multimerización de Proteína , Tilacoides/metabolismo , Tilacoides/ultraestructura
10.
Biochim Biophys Acta ; 1847(6-7): 607-19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25843550

RESUMEN

In plant chloroplasts, the two photosystems (PSII and PSI) are enriched in different thylakoid domains and, according to the established view, are regarded as energetically segregated from each other. A specific fraction of the light harvesting complex II (LHCII) has been postulated to get phosphorylated by the STN7 kinase and subsequently to migrate from PSII to PSI as part of a process called 'state transition'. Nevertheless, the thylakoid membrane incorporates a large excess of LHCII not present in the isolatable PSII-LHCII and PSI-LHCII complexes. Moreover, LHCII phosphorylation is not limited to a specific LHCII pool and "state 2" condition, but is found in all thylakoid domains in any constant light condition. Here, using a targeted solubilization of pigment-protein complexes from different thylakoid domains, we demonstrate that even a minor detachment of LHCII leads to markedly increased fluorescence emission from LHCII and PSII both in grana core and non-appressed thylakoid membranes and the effect of the detergent to detach LHCII is enhanced in the absence of LHCII phosphorylation. These findings provide evidence that PSII and PSI are energy traps embedded in the same energetically connected LHCII lake. In the lake, PSI and LHCII are energetically connected even in the absence of LHCII phosphorylation, yet the phosphorylation enhances the interaction required for efficient energy transfer to PSI in the grana margin regions.


Asunto(s)
Arabidopsis/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Tilacoides/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Transferencia de Energía , Fluorescencia , Luz , Fosforilación , Fotosíntesis
11.
Plant J ; 84(2): 360-73, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26332430

RESUMEN

Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non-appressed thylakoids harbor several high molecular mass pigment-protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light-harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non-appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment-protein complexes from all thylakoid compartments, revealed that the pigment-protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment-protein megacomplexes specifically in non-appressed thylakoids undergoes redox-dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Tilacoides/metabolismo , Aclimatación/efectos de la radiación , Arabidopsis/efectos de la radiación , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/efectos de la radiación
12.
Plant Physiol ; 168(2): 721-34, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25902812

RESUMEN

Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, proton gradient regulation5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Complejos de Proteína Captadores de Luz/metabolismo , Luz , Aclimatación/efectos de la radiación , Concentración de Iones de Hidrógeno , Immunoblotting , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Mutación/genética , Fosforilación/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Protones , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
13.
Biochim Biophys Acta ; 1837(1): 210-5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24161359

RESUMEN

Photodamage of Photosystem II (PSII) has been considered as an unavoidable and harmful reaction that decreases plant productivity. PSII, however, has an efficient and dynamically regulated repair machinery, and the PSII activity becomes inhibited only when the rate of damage exceeds the rate of repair. The speed of repair is strictly regulated according to the energetic state in the chloroplast. In contrast to PSII, Photosystem I (PSI) is very rarely damaged, but when occurring, the damage is practically irreversible. While PSII damage is linearly dependent on light intensity, PSI gets damaged only when electron flow from PSII exceeds the capacity of PSI electron acceptors to cope with the electrons. When electron flow to PSI is limited, for example in the presence of DCMU, PSI is extremely tolerant against light stress. Proton gradient (ΔpH)-dependent slow-down of electron transfer from PSII to PSI, involving the PGR5 protein and the Cyt b6f complex, protects PSI from excess electrons upon sudden increase in light intensity. Here we provide evidence that in addition to the ΔpH-dependent control of electron transfer, the controlled photoinhibition of PSII is also able to protect PSI from permanent photodamage. We propose that regulation of PSII photoinhibition is the ultimate regulator of the photosynthetic electron transfer chain and provides a photoprotection mechanism against formation of reactive oxygen species and photodamage in PSI.


Asunto(s)
Cloroplastos/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Cloroplastos/fisiología , Transporte de Electrón , Luz , Fotólisis , Complejo de Proteína del Fotosistema II/metabolismo , Plantas/metabolismo
14.
J Exp Bot ; 66(9): 2427-36, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25468932

RESUMEN

Oxygenic photosynthetic organisms experience strong fluctuations in light intensity in their natural terrestrial and aquatic growth environments. Recent studies with both plants and cyanobacteria have revealed that Photosystem (PS) I is the potential target of damage upon abrupt changes in light intensity. Photosynthetic organisms have, however, developed powerful mechanisms in order to protect their photosynthetic apparatus against such potentially hazardous light conditions. Although the electron transfer chain has remained relatively unchanged in both plant chloroplasts and their cyanobacterial ancestors, the photoprotective and regulatory mechanisms of photosynthetic light reactions have experienced conspicuous evolutionary changes. In cyanobacteria, the specific flavodiiron proteins (Flv1 and Flv3) are responsible for safeguarding PSI under rapidly fluctuating light intensities, whilst the thylakoid located terminal oxidases are involved in the protection of PSII during 12h diurnal cycles involving abrupt, square-wave, changes from dark to high light. Higher plants such as Arabidopsis thaliana have evolved different protective mechanisms. In particular, the PGR5 protein controls electron flow during sudden changes in light intensity by allowing the regulation mostly via the Cytochrome b6f complex. Besides the function of PGR5, plants have also acquired other dynamic regulatory mechanisms, among them the STN7-related LHCII protein phosphorylation that is similarly responsible for protection against rapid changes in the light environment. The green alga Chlamydomonas reinhardtii, as an evolutionary intermediate between cyanobacteria and higher plants, probably possesses both protective mechanisms. In this review, evolutionarily different photoprotective mechanisms under fluctuating light conditions are described and their contributions to cyanobacterial and plant photosynthesis are discussed.


Asunto(s)
Aclimatación , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/efectos de la radiación , Cloroplastos , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Transporte de Electrón , Modelos Biológicos , Fotosíntesis , Tilacoides
15.
Plant Cell ; 24(7): 2934-48, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22822205

RESUMEN

In nature, plants are challenged by constantly changing light conditions. To reveal the molecular mechanisms behind acclimation to sometimes drastic and frequent changes in light intensity, we grew Arabidopsis thaliana under fluctuating light conditions, in which the low light periods were repeatedly interrupted with high light peaks. Such conditions had only marginal effect on photosystem II but induced damage to photosystem I (PSI), the damage being most severe during the early developmental stages. We showed that PROTON GRADIENT REGULATION5 (PGR5)-dependent regulation of electron transfer and proton motive force is crucial for protection of PSI against photodamage, which occurred particularly during the high light phases of fluctuating light cycles. Contrary to PGR5, the NAD(P)H dehydrogenase complex, which mediates cyclic electron flow around PSI, did not contribute to acclimation of the photosynthetic apparatus, particularly PSI, to rapidly changing light intensities. Likewise, the Arabidopsis pgr5 mutant exhibited a significantly higher mortality rate compared with the wild type under outdoor field conditions. This shows not only that regulation of PSI under natural growth conditions is crucial but also the importance of PGR5 in PSI protection.


Asunto(s)
Aclimatación/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Luz , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema I/efectos de la radiación , Aclimatación/efectos de la radiación , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Respiración de la Célula/efectos de la radiación , Transporte de Electrón/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Modelos Moleculares , Mutación , Oxidación-Reducción/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Fenotipo , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Complejo de Proteína del Fotosistema II/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Fuerza Protón-Motriz/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación
16.
Biochim Biophys Acta ; 1817(1): 232-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21605541

RESUMEN

In higher plants, the photosystem (PS) II core and its several light harvesting antenna (LHCII) proteins undergo reversible phosphorylation cycles according to the light intensity. High light intensity induces strong phosphorylation of the PSII core proteins and suppresses the phosphorylation level of the LHCII proteins. Decrease in light intensity, in turn, suppresses the phosphorylation of PSII core, but strongly induces the phosphorylation of LHCII. Reversible and differential phosphorylation of the PSII-LHCII proteins is dependent on the interplay between the STN7 and STN8 kinases, and the respective phosphatases. The STN7 kinase phosphorylates the LHCII proteins and to a lesser extent also the PSII core proteins D1, D2 and CP43. The STN8 kinase, on the contrary, is rather specific for the PSII core proteins. Mechanistically, the PSII-LHCII protein phosphorylation is required for optimal mobility of the PSII-LHCII protein complexes along the thylakoid membrane. Physiologically, the phosphorylation of LHCII is a prerequisite for sufficient excitation of PSI, enabling the excitation and redox balance between PSII and PSI under low irradiance, when excitation energy transfer from the LHCII antenna to the two photosystems is efficient and thermal dissipation of excitation energy (NPQ) is minimised. The importance of PSII core protein phosphorylation is manifested under highlight when the photodamage of PSII is rapid and phosphorylation is required to facilitate the migration of damaged PSII from grana stacks to stroma lamellae for repair. The importance of thylakoid protein phosphorylation is highlighted under fluctuating intensity of light where the STN7 kinase dependent balancing of electron transfer is a prerequisite for optimal growth and development of the plant. This article is part of a Special Issue entitled: Photosystem II.


Asunto(s)
Complejo de Proteína del Fotosistema II/metabolismo , Plantas/metabolismo , Tilacoides/metabolismo , Fosforilación
17.
Planta ; 237(2): 399-412, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22971817

RESUMEN

The comparative study of photosynthetic regulation in the thylakoid membrane of different phylogenetic groups can yield valuable insights into mechanisms, genetic requirements and redundancy of regulatory processes. This review offers a brief summary on the current understanding of light harvesting and photosynthetic electron transport regulation in different photosynthetic eukaryotes, with a special focus on the comparison between higher plants and unicellular algae of secondary endosymbiotic origin. The foundations of thylakoid structure, light harvesting, reversible protein phosphorylation and PSI-mediated cyclic electron transport are traced not only from green algae to vascular plants but also at the branching point between the "green" and the "red" lineage of photosynthetic organisms. This approach was particularly valuable in revealing processes that (1) are highly conserved between phylogenetic groups, (2) serve a common physiological role but nevertheless originate in divergent genetic backgrounds or (3) are missing in one phylogenetic branch despite their unequivocal importance in another, necessitating a search for alternative regulatory mechanisms and interactions.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Filogenia , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/clasificación , Proteínas de Cloroplastos/metabolismo , Diatomeas/enzimología , Diatomeas/metabolismo , Transporte de Electrón , Evolución Molecular , Fosforilación , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Tilacoides/enzimología , Tilacoides/metabolismo
18.
Plant Physiol ; 160(4): 1896-910, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23033142

RESUMEN

According to the "state transitions" theory, the light-harvesting complex II (LHCII) phosphorylation in plant chloroplasts is essential to adjust the relative absorption cross section of photosystem II (PSII) and PSI upon changes in light quality. The role of LHCII phosphorylation upon changes in light intensity is less thoroughly investigated, particularly when changes in light intensity are too fast to allow the phosphorylation/dephosphorylation processes to occur. Here, we demonstrate that the Arabidopsis (Arabidopsis thaliana) stn7 (for state transition7) mutant, devoid of the STN7 kinase and LHCII phosphorylation, shows a growth penalty only under fluctuating white light due to a low amount of PSI. Under constant growth light conditions, stn7 acquires chloroplast redox homeostasis by increasing the relative amount of PSI centers. Thus, in plant chloroplasts, the steady-state LHCII phosphorylation plays a major role in preserving PSI upon rapid fluctuations in white light intensity. Such protection of PSI results from LHCII phosphorylation-dependent equal distribution of excitation energy to both PSII and PSI from the shared LHCII antenna and occurs in cooperation with nonphotochemical quenching and the proton gradient regulation5-dependent control of electron flow, which are likewise strictly regulated by white light intensity. LHCII phosphorylation is concluded to function both as a stabilizer (in time scales of seconds to minutes) and a dynamic regulator (in time scales from tens of minutes to hours and days) of redox homeostasis in chloroplasts, subject to modifications by both environmental and metabolic cues. Exceeding the capacity of LHCII phosphorylation/dephosphorylation to balance the distribution of excitation energy between PSII and PSI results in readjustment of photosystem stoichiometry.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Complejos de Proteína Captadores de Luz/metabolismo , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Aclimatación/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Transporte de Electrón/efectos de la radiación , Modelos Biológicos , Mutación/genética , Fenotipo , Fosforilación/efectos de la radiación , Fotosíntesis/efectos de la radiación , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
19.
Biochim Biophys Acta Bioenerg ; 1864(3): 148978, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37100340

RESUMEN

Light induced photosystem (PS)II photoinhibition inactivates and irreversibly damages the reaction center protein(s) but the light harvesting complexes continue the collection of light energy. Here we addressed the consequences of such a situation on thylakoid light harvesting and electron transfer reactions. For this purpose, Arabidopsis thaliana leaves were subjected to investigation of the function and regulation of the photosynthetic machinery after a distinct portion of PSII centers had experienced photoinhibition in the presence and absence of Lincomycin (Lin), a commonly used agent to block the repair of damaged PSII centers. In the absence of Lin, photoinhibition increased the relative excitation of PSII and decreased NPQ, together enhancing the electron transfer from still functional PSII centers to PSI. In contrast, in the presence of Lin, PSII photoinhibition increased the relative excitation of PSI and led to strong oxidation of the electron transfer chain. We hypothesize that plants are able to minimize the detrimental effects of high-light illumination on PSII by modulating the energy and electron transfer, but lose such a capability if the repair cycle is arrested. It is further hypothesized that dynamic regulation of the LHCII system has a pivotal role in the control of excitation energy transfer upon PSII damage and repair cycle to maintain the photosynthesis safe and efficient.


Asunto(s)
Arabidopsis , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Fotosíntesis/fisiología , Transporte de Electrón , Arabidopsis/metabolismo
20.
Plant Physiol ; 156(3): 1464-80, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21571669

RESUMEN

Light is an important environmental factor that modulates acclimation strategies and defense responses in plants. We explored the functional role of the regulatory subunit B'γ (B'γ) of protein phosphatase 2A (PP2A) in light-dependent stress responses of Arabidopsis (Arabidopsis thaliana). The predominant form of PP2A consists of catalytic subunit C, scaffold subunit A, and highly variable regulatory subunit B, which determines the substrate specificity of PP2A holoenzymes. Mutant leaves of knockdown pp2a-b'γ plants show disintegration of chloroplasts and premature yellowing conditionally under moderate light intensity. The cell-death phenotype is accompanied by the accumulation of hydrogen peroxide through a pathway that requires CONSTITUTIVE EXPRESSION OF PR GENES5 (CPR5). Moreover, the pp2a-b'γ cpr5 double mutant additionally displays growth suppression and malformed trichomes. Similar to cpr5, the pp2a-b'γ mutant shows constitutive activation of both salicylic acid- and jasmonic acid-dependent defense pathways. In contrast to cpr5, however, pp2a-b'γ leaves do not contain increased levels of salicylic acid or jasmonic acid. Rather, the constitutive defense response associates with hypomethylation of DNA and increased levels of methionine-salvage pathway components in pp2a-b'γ leaves. We suggest that the specific B'γ subunit of PP2A is functionally connected to CPR5 and operates in the basal repression of defense responses under low irradiance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Luz , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Southern Blotting , Metilación de ADN/genética , Metilación de ADN/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células del Mesófilo/citología , Células del Mesófilo/efectos de la radiación , Células del Mesófilo/ultraestructura , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Proteína Fosfatasa 2/genética , Subunidades de Proteína/genética , Proteómica , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA