Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Bioorg Chem ; 148: 107468, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781670

RESUMEN

A new efficient and versatile one-pot three-component synthesis of substituted pyrrolo[1,2-a]thieno[3,2-e]pyrimidine derivatives has been developed. It is based on a multistep cascade reaction from 2-aminothiophenes and 2-hydroxy-4-oxobut-2-enoic acids, and derivatives of cyanoacetic acid catalyzed by diisopropylethylamine. As a result, novel pyrrolo[1,2-a]thieno[3,2-e]pyrimidine derivatives (21 compounds) were synthesized in a mild reaction conditions with a high yield. The structures of the developed compounds were confirmed by NMR and elemental analysis. The influence of electron-withdrawing or electron-donor substituents on the antitumor activity of the developed compounds has been identified. In vitro screening analysis of 21 compounds revealed six lead candidates (12aa, 12dc, 12hc, 12ic, 12lb, and 12mb) that demonstrated the most significant antitumor activity against B16-F10, 4T1 and CT26 cells. Necrosis/apoptosis assay showed that apoptosis was the predominant mechanism of cell death. Molecular docking analysis revealed several potential targets for tested compounds, i.e. phosphatidylinositol 5-phosphate 4-kinase (PI5P4K2C), proto-oncogene serine/threonine-protein kinase (Pim-1), nicotinamide phosphoribosyltransferase (NAMPT) and dihydrofolate reductase (DHFR). The lead compound (12aa) can effectively induce cell apoptosis, possesses a high yield (98 %) and requires low-cost starting chemicals for its synthesis. In vivo experiments with melanoma-bearing mice confirmed that 12aa compound resulted in the significant tumor inhibition on 15 d after the therapy. In particular, tumor volume was ∼0.19 cm3 for 50 mg/kg versus ∼2.39 cm3 in case of untreated mice and tumor weight was ∼71.6 mg for 50 mg/kg versus ∼452.4 mg when considered untreated mice. Thus, our results demonstrated the high potential of the 12aa compound in the treatment of melanoma and can be recommended for further preclinical studies.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Pirimidinas , Pirroles , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Animales , Pirimidinas/química , Pirimidinas/síntesis química , Pirimidinas/farmacología , Ratones , Relación Estructura-Actividad , Estructura Molecular , Humanos , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Proto-Oncogenes Mas , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Melanoma Experimental/metabolismo
2.
Nanomedicine ; 59: 102753, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734039

RESUMEN

In this study, we have considered four types of nanoparticles (NPs): polylactic acid (PLA), gold (Au), calcium carbonate (CaCO3), and silica (SiO2) with similar sizes (TEM: 50-110 nm and DLS: 110-140 nm) to examine their passive accumulation in three different tumors: colon (CT26), melanoma (B16-F10), and breast (4T1) cancers. Our results demonstrate that each tumor model showed a different accumulation of NPs, in the following order: CT26 > B16-F10 > 4T1. The Au and PLA NPs were evidently characterized by a higher delivery efficiency in case of CT26 tumors compared to CaCO3 and SiO2 NPs. The Au NPs demonstrated the highest accumulation in B16-F10 cells compared to other NPs. These results were verified using SPECT, ex vivo fluorescence bioimaging, direct radiometry and histological analysis. Thus, this work contributes to new knowledge in passive tumor targeting of NPs and can be used for the development of new strategies for delivery of bioactive compounds.


Asunto(s)
Oro , Nanopartículas , Animales , Ratones , Nanopartículas/química , Oro/química , Dióxido de Silicio/química , Poliésteres/química , Portadores de Fármacos/química , Línea Celular Tumoral , Carbonato de Calcio/química , Femenino , Humanos , Sistemas de Liberación de Medicamentos , Ratones Endogámicos BALB C , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Melanoma Experimental/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo
3.
Nano Lett ; 23(23): 10811-10820, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37988557

RESUMEN

Redox-responsive drug delivery systems present a promising avenue for drug delivery due to their ability to leverage the unique redox environment within tumor cells. In this work, we describe a facile and cost-effective one-pot synthesis method for a redox-responsive delivery system based on novel trithiocyanuric acid (TTCA) nanoparticles (NPs). We conduct a thorough investigation of the impact of various synthesis parameters on the morphology, stability, and loading capacity of these NPs. The great drug delivery potential of the system is further demonstrated in vitro and in vivo by using doxorubicin as a model drug. The developed TTCA-PEG NPs show great drug delivery efficiency with minimal toxicity on their own both in vivo and in vitro. The simplicity of this synthesis, along with the promising characteristics of TTCA-PEG NPs, paves the way for new opportunities in the further development of redox-responsive drug delivery systems based on TTCA.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Sistemas de Liberación de Medicamentos/métodos , Doxorrubicina/uso terapéutico , Oxidación-Reducción , Portadores de Fármacos
4.
J Nanobiotechnology ; 20(1): 412, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109754

RESUMEN

Besides the broad development of nanotechnological approaches for cancer diagnosis and therapy, currently, there is no significant progress in the treatment of different types of brain tumors. Therapeutic molecules crossing the blood-brain barrier (BBB) and reaching an appropriate targeting ability remain the key challenges. Many invasive and non-invasive methods, and various types of nanocarriers and their hybrids have been widely explored for brain tumor treatment. However, unfortunately, no crucial clinical translations were observed to date. In particular, chemotherapy and surgery remain the main methods for the therapy of brain tumors. Exploring the mechanisms of the BBB penetration in detail and investigating advanced drug delivery platforms are the key factors that could bring us closer to understanding the development of effective therapy against brain tumors. In this review, we discuss the most relevant aspects of the BBB penetration mechanisms, observing both invasive and non-invasive methods of drug delivery. We also review the recent progress in the development of functional drug delivery platforms, from viruses to cell-based vehicles, for brain tumor therapy. The destructive potential of chemotherapeutic drugs delivered to the brain tumor is also considered. This review then summarizes the existing challenges and future prospects in the use of drug delivery platforms for the treatment of brain tumors.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Transporte Biológico , Encéfalo , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Humanos
5.
Nanomedicine ; 32: 102317, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33096245

RESUMEN

Acidification of the extracellular matrix, an intrinsic characteristic of many solid tumors, is widely exploited for physiologically triggered delivery of contrast agents, drugs, and nanoparticles to tumor. However, pH of tumor microenvironment shows intra- and inter-tumor variation. Herein, we investigate the impact of this variation on pH-triggered delivery of magnetic nanoparticles (MNPs) modified with pH-(low)-insertion peptide (pHLIP). Fluorescent flow cytometry, laser confocal scanning microscopy and transmission electron microscopy data proved that pHLIP-conjugated MNPs interacted with 4T1 cells in two-dimensional culture and in spheroids more effectively at pH 6.4 than at pH 7.2, and entered the cell via clathrin-independent endocytosis. The accumulation efficiency of pHLIP-conjugated MNPs in 4T1 tumors after their intravenous injection, monitored in vivo by magnetic resonance imaging, showed variation. Analysis of the tumor pH profiles recorded with implementation of original nanoprobe pH sensor, revealed obvious correlation between pH measured in the tumor with the amount of accumulated MNPs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas de Magnetita/química , Proteínas de la Membrana/farmacología , Neoplasias/patología , Microambiente Tumoral , Animales , Línea Celular Tumoral , Endocitosis/efectos de los fármacos , Femenino , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/ultraestructura , Ratones Endogámicos BALB C , Neoplasias/diagnóstico por imagen , Polietilenglicoles/química , Esferoides Celulares/efectos de los fármacos
6.
J Nanobiotechnology ; 18(1): 2, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898505

RESUMEN

After publication of this article, an error was found in the description of the holmium isotopes. 165Ho is a stable isotope a fraction of which is activated to 166Ho by neutron activation in a nuclear reactor [2]. In one paragraph of the published article, describing holmium containing QuiremSpheres, 165Ho should be replaced with 166Ho. The correct description is given below.

7.
Nano Lett ; 19(10): 7062-7071, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31496253

RESUMEN

Being the polymorphs of calcium carbonate (CaCO3), vaterite and calcite have attracted a great deal of attention as promising biomaterials for drug delivery and tissue engineering applications. Furthermore, they are important biogenic minerals, enabling living organisms to reach specific functions. In nature, vaterite and calcite monocrystals typically form self-assembled polycrystal micro- and nanoparticles, also referred to as spherulites. Here, we demonstrate that alpine plants belonging to the Saxifraga genus can tailor light scattering channels and utilize multipole interference effect to improve light collection efficiency via producing CaCO3 polycrystal nanoparticles on the margins of their leaves. To provide a clear physical background behind this concept, we study optical properties of artificially synthesized vaterite nanospherulites and reveal the phenomenon of directional light scattering. Dark-field spectroscopy measurements are supported by a comprehensive numerical analysis, accounting for the complex microstructure of particles. We demonstrate the appearance of generalized Kerker condition, where several higher order multipoles interfere constructively in the forward direction, governing the interaction phenomenon. As a result, highly directive forward light scattering from vaterite nanospherulites is observed in the entire visible range. Furthermore, ex vivo studies of microstructure and optical properties of leaves for the alpine plants Saxifraga "Southside Seedling" and Saxifraga Paniculata Ria are performed and underline the importance of the Kerker effect for these living organisms. Our results pave the way for a bioinspired strategy of efficient light collection by self-assembled polycrystal CaCO3 nanoparticles via tailoring light propagation directly to the photosynthetic tissue with minimal losses to undesired scattering channels.


Asunto(s)
Carbonato de Calcio/metabolismo , Nanopartículas/metabolismo , Hojas de la Planta/metabolismo , Saxifragaceae/metabolismo , Cristalización , Luz , Procesos Fotoquímicos
8.
Molecules ; 25(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825590

RESUMEN

The design of cargo carriers with high biocompatibility, unique morphological characteristics, and capability of strong bonding of fluorescent dye is highly important for the development of a platform for smart imaging and diagnostics. In this paper, BODIPY-doped silica nanoparticles were prepared through a "one-pot" soft-template method using a sol-gel process. Several sol-gel precursors have been used in sol-gel synthesis in the presence of soft-template to obtain the silica-based materials with the most appropriate morphological features for the immobilization of BODIPY molecules. Obtained silica particles have been shown to be non-cytotoxic and can be effectively internalized into the cervical cancer cell line (HeLa). The described method of synthesis allows us to obtain silica-based carriers with an immobilized fluorescent dye that provide the possibility for real-time imaging and detection of these carriers.


Asunto(s)
Compuestos de Boro/química , Boro/química , Dimetilaminas/química , Nanopartículas/administración & dosificación , Dióxido de Silicio/química , Neoplasias del Cuello Uterino/tratamiento farmacológico , Supervivencia Celular , Femenino , Células HeLa , Humanos , Nanopartículas/química , Transición de Fase , Neoplasias del Cuello Uterino/metabolismo
9.
Langmuir ; 35(13): 4747-4762, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30840473

RESUMEN

There are many reports about the interaction of multilayer capsules with biological systems in the literature. A majority of them are devoted to the in vitro study with two-dimensional cell cultures. Multilayer capsule fabrication had been under intensive investigation from 1990s and 2000s by Prof. Helmuth Möhwald, and many of his followers further developed their own research directions, focusing on capsule implementation in various fields of biology and medicine. The aim of this future article is to consistently consider the most recent advances in cell-capsule interactions for different biomedical applications, including functionalization of clinically relevant cells, nonviral gene delivery, magnetization of cells to control their movement, and in vivo drug delivery. Finally, the description and discussion of the new trends and perspectives for improved functionalities of capsules in design and functionalization of cell-assisted drug vehicles are the major topics of this work.

10.
J Nanobiotechnology ; 17(1): 90, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31434562

RESUMEN

Radiopharmaceuticals have proven to be effective agents, since they can be successfully applied for both diagnostics and therapy. Effective application of relevant radionuclides in pre-clinical and clinical studies depends on the choice of a sufficient delivery platform. Herein, we provide a comprehensive review on the most relevant aspects in radionuclide delivery using the most employed carrier systems, including, (i) monoclonal antibodies and their fragments, (ii) organic and (iii) inorganic nanoparticles, and (iv) microspheres. This review offers an extensive analysis of radionuclide delivery systems, the approaches of their modification and radiolabeling strategies with the further prospects of their implementation in multimodal imaging and disease curing. Finally, the comparative outlook on the carriers and radionuclide choice, as well as on the targeting efficiency of the developed systems is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA