Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Pathol ; 263(2): 166-177, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38629245

RESUMEN

Infantile fibrosarcomas (IFS) and congenital mesoblastic nephroma (CMN) are rare myofibroblastic tumors of infancy and early childhood commonly harboring the ETV6::NTRK3 gene fusion. IFS/CMN are considered as tumors with an 'intermediate prognosis' as they are locally aggressive, but rarely metastasize, and generally have a favorable outcome. A fraction of IFS/CMN-related neoplasms are negative for the ETV6::NTRK3 gene rearrangement and are characterized by other chimeric proteins promoting MAPK signaling upregulation. In a large proportion of these tumors, which are classified as IFS-like mesenchymal neoplasms, the contributing molecular events remain to be identified. Here, we report three distinct rearrangements involving RAF1 among eight ETV6::NTRK3 gene fusion-negative tumors with an original histological diagnosis of IFS/CMN. The three fusion proteins retain the entire catalytic domain of the kinase. Two chimeric products, GOLGA4::RAF1 and LRRFIP2::RAF1, had previously been reported as driver events in different cancers, whereas the third, CLIP1::RAF1, represents a novel fusion protein. We demonstrate that CLIP1::RAF1 acts as a bona fide oncoprotein promoting cell proliferation and migration through constitutive upregulation of MAPK signaling. We show that the CLIP1::RAF1 hyperactive behavior does not require RAS activation and is mediated by constitutive 14-3-3 protein-independent dimerization of the chimeric protein. As previously reported for the ETV6::NTRK3 fusion protein, CLIP1::RAF1 similarly upregulates PI3K-AKT signaling. Our findings document that RAF1 gene rearrangements represent a recurrent event in ETV6::NTRK3-negative IFS/CMN and provide a rationale for the use of inhibitors directed to suppress MAPK and PI3K-AKT signaling in these cancers. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Fibrosarcoma , Nefroma Mesoblástico , Proteínas de Fusión Oncogénica , Proteínas Proto-Oncogénicas c-raf , Humanos , Fibrosarcoma/genética , Fibrosarcoma/patología , Proteínas Proto-Oncogénicas c-raf/genética , Lactante , Proteínas de Fusión Oncogénica/genética , Nefroma Mesoblástico/genética , Nefroma Mesoblástico/patología , Femenino , Masculino , Neoplasias Renales/genética , Neoplasias Renales/patología , Fusión Génica , Transducción de Señal/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proliferación Celular , Reordenamiento Génico , Proteína ETS de Variante de Translocación 6 , Receptor trkC
2.
Immunology ; 171(2): 198-211, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37884280

RESUMEN

Glioblastoma, isocitrate dehydrogenase-wildtype (GB), is the most common and aggressive primary brain malignancy with poor outcome. Immune checkpoint inhibitors (ICIs) have been tested in GB and, despite disappointing results, the identification of a small subgroup of responders underlies the need to improve our understanding of the tumour microenvironment (TME) immunity. This study aimed to determine whether the expression of selected immune checkpoints on tissue-resident memory T cells (Trm) may predict patient outcome. We conducted a single cohort observational study. Tumour samples were collected from 45 patients with histologically confirmed GB (WHO grade 4) and processed to obtain single-cell suspensions. Patients were assessed for the correlation of Trm phenotype with overall survival (OS) or progression-free survival (PFS) using multiparametric flow cytometry and uni/multivariate analyses. Levels of Trm expressing programmed cell death protein 1 (PD1) and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) were found to be linked to clinical outcome. Low frequency of Trm expressing PD1 or TIM3 or both markers defined subgroups as independent positive prognostic factors for patient survival. On multivariate analysis, low CD8+CD103+PD1+TIM3+ Trm and Karnofsky performance status (KPS) ≥70 were confirmed to be the most predictive independent factors associated with longer OS (hazard ratios-HR [95%CI]: 0.14 [0.04-0.52] p < 0.001, 0.39 [0.16-0.96] p = 0.04, respectively). The CD8+CD103+ Trm subgroups were also age-related predictors for survival in GB.


Asunto(s)
Glioblastoma , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Pronóstico , Linfocitos T CD8-positivos , Microambiente Tumoral
3.
Hum Mol Genet ; 31(4): 561-575, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34508588

RESUMEN

Germline-activating mutations in HRAS cause Costello syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here, we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via reactive oxygen species-dependent AMP-activated protein kinase α and p38 hyperactivation, occurs in primary fibroblasts of CS patients, resulting in accelerated glycolysis and increased fatty acid synthesis and storage as lipid droplets. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.


Asunto(s)
Síndrome de Costello , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Fibroblastos/metabolismo , Humanos , Oxidación-Reducción , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/genética
4.
Transfusion ; 54(4): 1059-70, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24004289

RESUMEN

BACKGROUND: Cultured red blood cells (cRBCs) from cord blood (CB) have been proposed as transfusion products. Whether buffy coats discarded from blood donations (adult blood [AB]) may be used to generate cRBCs for transfusion has not been investigated. STUDY DESIGN AND METHODS: Erythroid progenitor cell content and numbers and blood group antigen profiles of erythroblasts (ERYs) and cRBCs generated in human erythroid massive amplification (HEMA) culture by CB (n = 7) and AB (n = 33, three females, three males, one AB with rare blood antigens cryopreserved using CB protocols) were compared. RESULTS: Variability was observed both in progenitor cell content (twofold) and number of ERYs generated (1 log) by CB and AB in HEMA. The average progenitor cell contents of the subset of AB and CB analyzed were similar. AB generated numbers of ERYs three times lower (p < 0.01) than CB in HEMA containing fetal bovine serum but similar to CB in HEMA containing human proteins. Female AB contained two times fewer (p < 0.05) erythroid progenitor cells but generated numbers of ERYs similar to those generated by male AB. Cryopreserved AB with a rare blood group phenotype and shipped to another laboratory generated great numbers of ERYs, 90% of which matured into cRBCs. Blood group antigen expression was consistent with the donor genotype for ERYs generated both by CB and AB but concordant with that of native RBCs only for cells derived from AB. CONCLUSION: Buffy coats from regular donors, including a donor with rare phenotypes stored under conditions established for CB, are not inferior to CB for the generation of cRBCs.


Asunto(s)
Donantes de Sangre , Conservación de la Sangre/normas , Eritrocitos/fisiología , Congelación , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/fisiología , Adulto , Conservación de la Sangre/métodos , Técnicas de Cultivo de Célula/normas , Células Cultivadas , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/fisiología , Femenino , Prueba de Histocompatibilidad , Humanos , Masculino , Materiales Manufacturados/normas , Fenotipo
5.
J Leukoc Biol ; 115(6): 1053-1069, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38242866

RESUMEN

Tuberculosis is one of the deadliest infectious diseases worldwide. Mycobacterium tuberculosis has developed strategies not only to evade host immunity but also to manipulate it for its survival. We investigated whether Mycobacterium tuberculosis exploited the immunogenicity of Ag85B, one of its major secretory proteins, to redirect host antituberculosis immunity to its advantage. We found that administration of Ag85B protein to mice vaccinated with Bacillus Calmette-Guérin impaired the protection elicited by vaccination, causing a more severe infection when mice were challenged with Mycobacterium tuberculosis. Ag85B administration reduced Bacillus Calmette-Guérin-induced CD4 T-cell activation and IFN-γ, CCL-4, and IL-22 production in response to Mycobacterium tuberculosis-infected cells. On the other hand, it promoted robust Ag85B-responsive IFN-γ-producing CD4 T cells, expansion of a subset of IFN-γ/IL-10-producing CD4+FOXP3+Treg cells, differential activation of IL-17/IL-22 responses, and activation of regulatory and exhaustion pathways, including programmed death ligand 1 expression on macrophages. All this resulted in impaired intracellular Mycobacterium tuberculosis growth control by systemic immunity, both before and after the Mycobacterium tuberculosis challenge. Interestingly, Mycobacterium tuberculosis infection itself generated Ag85B-reactive inflammatory immune cells incapable of clearing Mycobacterium tuberculosis in both unvaccinated and Bacillus Calmette-Guérin-vaccinated mice. Our data suggest that Mycobacterium tuberculosis can exploit the strong immunogenicity of Ag85B to promote its own survival and spread. Since Ag85B is normally secreted by replicating bacteria and is commonly found in the lungs of the Mycobacterium tuberculosis-infected host, our findings may advance the understanding on the mechanisms of Mycobacterium tuberculosis pathogenesis and immune evasion.


Asunto(s)
Aciltransferasas , Antígenos Bacterianos , Vacuna BCG , Proteínas Bacterianas , Ratones Endogámicos C57BL , Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Aciltransferasas/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Vacuna BCG/inmunología , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Viabilidad Microbiana , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/microbiología
6.
Biomolecules ; 14(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38927066

RESUMEN

The cell cycle and the transcriptome dynamics of yeast exposed to extracellular self-DNA during an aerobic batch culture on glucose have been investigated using cytofluorimetric and RNA-seq analyses. In parallel, the same study was conducted on yeast cells growing in the presence of (heterologous) nonself-DNA. The self-DNA treatment determined a reduction in the growth rate and a major elongation of the diauxic lag phase, as well as a significant delay in the achievement of the stationary phase. This was associated with significant changes in the cell cycle dynamics, with slower exit from the G0 phase, followed by an increased level of cell percentage in the S phase, during the cultivation. Comparatively, the exposure to heterologous DNA did not affect the growth curve and the cell cycle dynamics. The transcriptomic analysis showed that self-DNA exposure produced a generalized downregulation of transmembrane transport and an upregulation of genes associated with sulfur compounds and the pentose phosphate pathway. Instead, in the case of the nonself treatment, a clear response to nutrient deprivation was detected. Overall, the presented findings represent further insights into the complex functional mechanisms of self-DNA inhibition.


Asunto(s)
Ciclo Celular , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Ciclo Celular/genética , Técnicas de Cultivo Celular por Lotes , Regulación Fúngica de la Expresión Génica , ADN/metabolismo , Glucosa/metabolismo
7.
J Exp Clin Cancer Res ; 43(1): 209, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39061080

RESUMEN

Immune cell-derived extracellular vesicles (EV) affect tumor progression and hold promise for therapeutic applications. Eosinophils are major effectors in Th2-related pathologies recently implied in cancer. Here, we evaluated the anti-tumor activities of eosinophil-derived EV following activation with the alarmin IL-33. We demonstrate that IL-33-activated mouse and human eosinophils produce higher quantities of EV with respect to eosinophils stimulated with IL-5. Following incorporation of EV from IL-33-activated eosinophils (Eo33-EV), but not EV from IL-5-treated eosinophils (Eo5-EV), mouse and human tumor cells increased the expression of cyclin-dependent kinase inhibitor (CDKI)-related genes resulting in cell cycle arrest in G0/G1, reduced proliferation and inhibited tumor spheroid formation. Moreover, tumor cells incorporating Eo33-EV acquired an epithelial-like phenotype characterized by E-Cadherin up-regulation, N-Cadherin downregulation, reduced cell elongation and migratory extent in vitro, and impaired capacity to metastasize to lungs when injected in syngeneic mice. RNA sequencing revealed distinct mRNA signatures in Eo33-EV and Eo5-EV with increased presence of tumor suppressor genes and enrichment in pathways related to epithelial phenotypes and negative regulation of cellular processes in Eo33-EV compared to Eo5-EV. Our studies underscore novel IL-33-stimulated anticancer activities of eosinophils through EV-mediated reprogramming of tumor cells opening perspectives on the use of eosinophil-derived EV in cancer therapy.


Asunto(s)
Eosinófilos , Vesículas Extracelulares , Interleucina-33 , Animales , Interleucina-33/metabolismo , Ratones , Eosinófilos/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Línea Celular Tumoral , Proliferación Celular , Reprogramación Celular
8.
Am J Hematol ; 88(9): 723-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23720412

RESUMEN

Erythropoiesis is a tightly regulated process which becomes decoupled from its normal differentiation program in patients with polycythemia vera (PV). Somatic mutations in JAK2 are commonly associated with this myeloid proliferative disorder. To gain insight into the molecular events that are required for abnormally developing erythroid cells to escape dependence on normal growth signals, we performed in vitro expansion of mature erythroblasts (ERY) from seven normal healthy donors and from seven polycythemic patients in the presence of IL3, EPO, SCF for 10, 11, or 13 days. Normal ERYs required exposure to the glucocorticoid dexamethasone (Dex) for expansion, while PV-derived ERYs expanded in the absence of dexamethasone. RNA expression profiling revealed enrichment of two known oncogenes, GPR56 and RAB4a, in PV-derived ERYs along with reduced expression levels of transcription factor TAL1 (ANOVA FDR < 0.05). While both normal and polycythemic-derived ERYs integrated signaling cascades for growth, they did so via different signaling pathways which are represented by their differential phospho-profiles. Our results show that normal ERYs displayed greater levels of phosphorylation of EGFR, PDGFRß, TGFß, and cKit, while PV-derived ERYs were characterized by increased phosphorylation of cytoplasmic kinases in the JAK/STAT, PI3K, and GATA1 pathways. Together these data suggest that PV erythroblast expansion and maturation may be maintained and enriched in the absence of dexamethasone through reduced TAL1 expression and by accessing additional signaling cascades. Members of this acquired repertoire may provide important insight into the pathogenesis of aberrant erythropoiesis in myeloproliferative neoplasms such as polycythemia vera.


Asunto(s)
Eritroblastos/metabolismo , Eritropoyesis/genética , Fosfoproteínas/genética , Policitemia Vera/genética , Adulto , Anciano , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Dexametasona/farmacología , Eritroblastos/efectos de los fármacos , Eritroblastos/patología , Eritropoyetina/farmacología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Interleucina-3/farmacología , Masculino , Persona de Mediana Edad , Fosfoproteínas/metabolismo , Policitemia Vera/metabolismo , Policitemia Vera/patología , Proteómica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Factor de Células Madre/farmacología , Proteína 1 de la Leucemia Linfocítica T Aguda , Proteínas de Unión al GTP rab4/genética , Proteínas de Unión al GTP rab4/metabolismo
9.
J Extracell Vesicles ; 12(12): e12392, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38072803

RESUMEN

Exosomes are among the most puzzling vehicles of intercellular communication, but several crucial aspects of their biogenesis remain elusive, primarily due to the difficulty in purifying vesicles with similar sizes and densities. Here we report an effective methodology for labelling small extracellular vesicles (sEV) using Bodipy FL C16, a fluorescent palmitic acid analogue. In this study, we present compelling evidence that the fluorescent sEV population derived from Bodipy C16-labelled cells represents a discrete subpopulation of small exosomes following an intracellular pathway. Rapid cellular uptake and metabolism of Bodipy C16 resulted in the incorporation of fluorescent phospholipids into intracellular organelles specifically excluding the plasma membrane and ultimately becoming part of the exosomal membrane. Importantly, our fluorescence labelling method facilitated accurate quantification and characterization of exosomes, overcoming the limitations of nonspecific dye incorporation into heterogeneous vesicle populations. The characterization of Bodipy-labelled exosomes reveals their enrichment in tetraspanin markers, particularly CD63 and CD81, and in minor proportion CD9. Moreover, we employed nanoFACS sorting and electron microscopy to confirm the exosomal nature of Bodipy-labelled vesicles. This innovative metabolic labelling approach, based on the fate of a fatty acid, offers new avenues for investigating exosome biogenesis and functional properties in various physiological and pathological contexts.


Asunto(s)
Exosomas , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Ácido Palmítico/metabolismo , Exosomas/metabolismo , Transporte Biológico
10.
Virology ; 583: 1-13, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060797

RESUMEN

Type I interferon (IFN-I) evasion by Dengue virus (DENV) is key in DENV pathogenesis. The non-structural protein 5 (NS5) antagonizes IFN-I response through the degradation of the signal transducer and activator of transcription 2 (STAT2). We developed a K562 cell-based platform, for high throughput screening of compounds potentially counteracting the NS5-mediated antagonism of IFN-I signaling. Upon a screening with a library of 1220 approved drugs, 3 compounds previously linked to DENV inhibition (Apigenin, Chrysin, and Luteolin) were identified. Luteolin and Apigenin determined a significant inhibition of DENV2 replication in Huh7 cells and the restoration of STAT2 phosphorylation in both cell systems. Apigenin and Luteolin were able to stimulate STAT2 even in the absence of infection. Despite the "promiscuous" and "pan-assay-interfering" nature of Luteolin, Apigenin promotes STAT2 Tyr 689 phosphorylation and activation, highlighting the importance of screening for compounds able to interact with host factors, to counteract viral proteins capable of dampening innate immune responses.


Asunto(s)
Virus del Dengue , Apigenina/farmacología , Virus del Dengue/fisiología , Luteolina/farmacología , Transducción de Señal , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Humanos
11.
Microb Cell ; 10(12): 292-295, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38053574

RESUMEN

Extracellular DNA (exDNA) can be actively released by living cells and different putative functions have been attributed to it. Further, homologous exDNA has been reported to exert species-specific inhibitory effects on several organisms. Here, we demonstrate by different experimental evidence, including 1H-NMR metabolomic fingerprint, that the growth rate decline in Saccharomyces cerevisiae fed-batch cultures is determined by the accumulation of exDNA in the medium. Sequencing of such secreted exDNA represents a portion of the entire genome, showing a great similarity with extrachromosomal circular DNA (eccDNA) already reported inside yeast cells. The recovered DNA molecules were mostly single strands and specifically associated to the yeast metabolism displayed during cell growth. Flow cytometric analysis showed that the observed growth inhibition by exDNA corresponded to an arrest in the S phase of the cell cycle. These unprecedented findings open a new scenario on the functional role of exDNA produced by living cells.

12.
Methods Mol Biol ; 2504: 207-217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35467289

RESUMEN

Extracellular vesicles (EVs) are membranous particles released by all cells in the external milieu. Depending on their origin, they are given different names: exosomes are nanovesicles that originate from the endosomal compartment, whereas microvesicles bud from plasma membrane. Both contain molecules that are crucial for the onset and spreading of different pathologies, from neurodegenerative diseases to cancer, and are considered promising disease markers. On the other hand, EVs are often used as therapeutic tools, and can be engineered to carry drugs and chemicals. This chapter describes a method to produce EVs, mainly exosomes, containing the green fluorescent protein (GFP) linked to an exosome anchoring protein (Nefmut). This enables counting and tracing of fluorescent EVs by different methods, including conventional flow cytometry.


Asunto(s)
Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Micropartículas Derivadas de Células/metabolismo , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Citometría de Flujo
13.
J Cancer ; 13(5): 1573-1587, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371312

RESUMEN

Background: Gender differences in melanoma incidence, metastasis formation and disease progression are increasingly evident in epidemiological studies, with women showing significantly better survival than men. Among factors possibly underlying the disparities, sex hormones seem to play a key role. Nonetheless, functional mechanisms are still unclear, except for the antitumor ability of Estrogen Receptor (ER) ß, whose expression determination has often been suggested for melanoma prognosis. In this study, we aimed at evaluating the molecular mechanisms and functional effects associated with ERß signaling by using its agonist LY500307. Methods: We evaluated the antitumor effect of the specific synthetic ERß agonist LY500307 on some human melanoma cell lines, selected for different genetic background, expression levels of ERs and tumor progression. The expression of α and ß estrogen receptors was investigated taking advantage of The Cancer Genome Atlas database and confirmed on some selected melanoma cell lines. The biological effects of LY500307 were determined in vitro looking at melanoma cell proliferation, cell cycle profiles and migration demonstrating by western blot the involvement of some pathway specific markers. The LY500307-dependent induction of cell death was also analyzed by flow cytometry and western blot analysis of caspase 3 and poly adenosine diphosphate-ribose polymerase (PARP). Results: A significant decrease in the expression of both ERs, even more pronounced for ERα, has been found in patients with metastatic NRAS mutation. Treatment with LY500307 significantly reduced the proliferation of melanoma cells showing a cell cycle arrest at the G2/M boundary phase and promoting apoptosis with different sensitivities associated with disease stage and mutation. Indeed, the ERß agonist affects melanoma migration, inducing a reversion of the epithelial-mesenchymal transition, more evident in a low aggressive primary melanoma cell line. Conclusion: These results demonstrate the capability of LY500307 to reduce melanoma malignancy, counteracting cell viability and dissemination, overall suggesting a possible future use of LY500307 in personalized combined therapy.

14.
Front Immunol ; 13: 894163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693823

RESUMEN

Epithelial-derived alarmins (IL-33, TSLP, and IL-25) play an upstream role in the pathogenesis of asthma. Basophil-derived cytokines are a pivotal component of allergic inflammation. We evaluated the in vitro effects of IL-33, TSLP, and IL-25, alone and in combination with IL-3 on purified peripheral blood human basophils (hBaso) and bone marrow-derived mouse basophils (mBaso) in modulating the production of IL-4, IL-13, CXCL8 or the mouse CXCL8 equivalents CXCL1 and CXCL2. IL-3 and IL-33, but not TSLP and IL-25, concentration-dependently induced IL-4, IL-13, and CXCL8 release from hBaso. IL-3 synergistically potentiated the release of cytokines induced by IL-33 from hBaso. In mBaso, IL-3 and IL-33 rapidly induced IL-4 and IL-13 mRNA expression and protein release. IL-33, but not IL-3, induced CXCL2 and CXCL1 from mBaso. Differently from hBaso, TSLP induced IL-4, IL-13, CXCL1 and CXCL2 mRNA expression and protein release from mBaso. IL-25 had no effect on IL-4, IL-13, and CXCL1/CXCL2 mRNA expression and protein release even in the presence of IL-3. No synergism was observed between IL-3 and either IL-25 or TSLP. IL-3 inhibited both TSLP- and IL-33-induced CXCL1 and CXCL2 release from mBaso. Our results highlight some similarities and marked differences between the effects of IL-3 and alarmins on the release of cytokines from human and mouse basophils.


Asunto(s)
Basófilos , Interleucina-33 , Alarminas/metabolismo , Animales , Basófilos/metabolismo , Citocinas/metabolismo , Humanos , Interleucina-13/metabolismo , Interleucina-3/metabolismo , Interleucina-3/farmacología , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Ratones , ARN Mensajero/metabolismo
15.
Int J Pharm ; 613: 121391, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34923052

RESUMEN

Numerous clinical observations indicate that, despite novel therapeutic approaches, a high percentage of melanoma patients is non-responder or suffers of severe drug-related toxicity. To overcome these problems, we considered the option of designing, preparing and characterizing nanoemulsions and niosomes containing oleic acid, a pH-sensitive monounsaturated fatty acid holding per se an antimetastatic and anti-inflammatory role in melanoma. These new nanostructures will allow in vivo administration of oleic acid, otherwise toxic in its free form. For pulmonary route chitosan, a mucoadhesive agent, was enclosed in these nanocarriers to improve residence time at the lung site. A deep physical and chemical characterization was carried out evaluating size, ζ -potential, microviscosity, polarity as well as stability over time and in culture media. Moreover, their pH-sensitivity was evaluated by fluorometric assay. Cytotoxicity and cellular uptake were assessed in cultured normal fibroblasts and human melanoma cell lines. Interestingly, results obtained confirm nanocarrier stability and pH-sensitivity, associated to absence of cell toxicity, efficient cellular uptake and retention. Therefore, these new pH-sensitive oleic acid-based nanostructures could represent, by combining drug delivery in a pH-dependent manner with the antimetastatic potential of this fatty acid, a powerful strategy for more specific medicine against metastatic melanoma.


Asunto(s)
Melanoma , Nanopartículas , Portadores de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Melanoma/tratamiento farmacológico , Ácido Oléico
16.
Blood Cells Mol Dis ; 47(3): 182-97, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21775174

RESUMEN

The number of erythroblasts generated ex-vivo under human-erythroid massive-amplification conditions by mononuclear cells from one unit of adult blood (~10(10)) are insufficient for transfusion (~10(12) red cells), emphasizing the need for studies to characterize cellular interactions during culture to increase erythroblast production. To identify the cell populations which generate erythroblasts under human-erythroid-massive-amplification conditions and the factors that limit proliferation, day 10 non-erythroblasts and immature- and mature-erythroblasts were separated by sorting, labelled with carboxyfluorescein-diacetate-succinimidyl-ester and re-cultured either under these conditions (for proliferation, maturation and/or apoptosis/autophagy determinations) or in semisolid media (for progenitor cell determination). Non-erythroblasts contained 54% of the progenitor cells but did not grow under human-erythroid-massive-amplification conditions. Immature-erythroblasts contained 25% of the progenitor cells and generated erythroblasts under human-erythroid-massive-amplification conditions (FI at 48 h=2.57±1.15). Mature-erythroblasts did not generate colonies and died in human-erythroid-massive-amplification conditions. In sequential sorting/re-culture experiments, immature-erythroblasts retained the ability to generate erythroblasts for 6 days and generated 2-5-fold more cells than the corresponding unfractionated population, suggesting that mature-erythroblasts may limit erythroblast expansion. In co-cultures of carboxyfluorescein-diacetate-succinimidyl-ester-labelled-immature-erythroblasts with mature-erythroblasts at increasing ratios, cell numbers did not increase and proliferation, maturation and apoptotic rates were unchanged. However, Acridine Orange staining (a marker for autophagic death) increased from ~3.2% in cultures with immature-erythroblasts alone to 14-22% in cultures of mature-erythroblasts with and without immature-erythroblasts. In conclusion, these data identify immature-erythroblasts as the cells that generate additional erythroblasts in human-erythroid-massive-amplification cultures and autophagy as the leading cause of death limiting the final cellular output of these cultures.


Asunto(s)
Autofagia/fisiología , Técnicas de Cultivo de Célula/métodos , Eritroblastos/citología , Eritropoyesis/fisiología , Células Madre Hematopoyéticas/citología , Anemia/patología , Apoptosis/fisiología , Transfusión Sanguínea/métodos , Diferenciación Celular , Proliferación Celular , Separación Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Eritrocitos/citología , Glucocorticoides/farmacología , Sustancias de Crecimiento/farmacología , Humanos , Inmunofenotipificación
17.
PLoS One ; 16(6): e0248382, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34111115

RESUMEN

The yeast Saccharomyces cerevisiae is a reference model system and one of the widely used microorganisms in many biotechnological processes. In industrial yeast applications, combined strategies aim to maximize biomass/product yield, with the fed-batch culture being one of the most frequently used. Flow cytometry (FCM) is widely applied in biotechnological processes and represents a key methodology to monitor cell population dynamics. We propose here an application of FCM in the analysis of yeast cell cycle along the time course of a typical S. cerevisiae fed-batch culture. We used two different dyes, SYTOX Green and SYBR Green, with the aim to better define each stage of cell cycle during S. cerevisiae fed-batch culture. The results provide novel insights in the use of FCM cell cycle analysis for the real-time monitoring of S. cerevisiae bioprocesses.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Reactores Biológicos/microbiología , Fluorometría , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo
18.
Commun Biol ; 4(1): 1375, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880413

RESUMEN

Cholesterol-rich microdomains are membrane compartments characterized by specific lipid and protein composition. These dynamic assemblies are involved in several biological processes, including infection by intracellular pathogens. This work provides a comprehensive analysis of the composition of human erythrocyte membrane microdomains. Based on their floating properties, we also categorized the microdomain-associated proteins into clusters. Interestingly, erythrocyte microdomains include the vast majority of the proteins known to be involved in invasion by the malaria parasite Plasmodium falciparum. We show here that the Ecto-ADP-ribosyltransferase 4 (ART4) and Aquaporin 1 (AQP1), found within one specific cluster, containing the essential host determinant CD55, are recruited to the site of parasite entry and then internalized to the newly formed parasitophorous vacuole membrane. By generating null erythroid cell lines, we showed that one of these proteins, ART4, plays a role in P. falciparum invasion. We also found that genetic variants in both ART4 and AQP1 are associated with susceptibility to the disease in a malaria-endemic population.


Asunto(s)
Membrana Eritrocítica/química , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Malaria/parasitología , Microdominios de Membrana/química , Membrana Eritrocítica/parasitología , Eritrocitos/química , Humanos , Plasmodium falciparum/fisiología
19.
J Med Chem ; 64(21): 15973-15990, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34714648

RESUMEN

We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.


Asunto(s)
Oncogenes , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Dominios Homologos src/efectos de los fármacos , Animales , Sitios de Unión , Mutación , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal , Pez Cebra/embriología
20.
Altern Lab Anim ; 38(5): 367-86, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21105755

RESUMEN

In 2005, the European Centre for the Validation of Alternative Methods (ECVAM) sponsored a study aimed at evaluating the reproducibility (between-laboratory and within-laboratory variability) and the predictive capacity of two in vitro cellular systems--the Caco-2/ATCC parental cell line and the Caco- 2/TC7 clone--for estimating the oral fraction absorbed (Fa) in humans. Two laboratories, both of which had experience with Caco-2 cultures, participated in the study. Ten test chemicals with documented in vivo oral absorption data were selected. Atenolol, cimetidine and propranolol were included as reference compounds for low, medium and high intestinal absorption, respectively. Transport experiments were independently carried out in the two laboratories, according to an agreed protocol. The apparent permeability coefficient (Papp) was calculated in either the apical to basolateral (absorption) or the basolateral to apical (efflux) direction. To investigate the involvement of possible active transport processes, experiments were also performed in the presence of sodium azide plus 2-deoxy-D-glucose in the donor compartment. Before performing the permeability experiments, the highest concentration that did not impair barrier integrity was identified for each test chemical in both cell models, by applying the chemicals together with a marker of the paracellular pathway. In addition, barrier integrity was assessed by measuring the trans-epithelial electrical resistance. All the permeability data obtained were independently analysed. Reproducibility was assessed for the seven substances for which sufficient data were available. Within-laboratory variability was based on coefficient of variation (CV) values. Median CV values of 10.4% and 14.7% were found for the two laboratories. Concerning between-laboratory reproducibility, comparable response levels were obtained for the three reference compounds and for paracetamol, while, for the other chemicals, the results were less reproducible--in particular, for compounds known to be actively transported. The Papp values obtained for both cell lines were comparable for identical experimental conditions. Despite the limited number of substances tested, the predictive capacity was investigated by using two mathematical models available in the literature. Good estimations of the human Fa were obtained for five well-absorbed compounds, while moderately and poorly absorbed compounds were overestimated. It is proposed that a confirmatory study addressing the main results, including power considerations, would now be useful.


Asunto(s)
Absorción Intestinal , Células CACO-2 , Cromatografía Líquida de Alta Presión , Humanos , Permeabilidad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA