Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 78(7): 3247-3264, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33783563

RESUMEN

The formation of new blood vessels is driven by proliferation of endothelial cells (ECs), elongation of maturing vessel sprouts and ultimately vessel remodeling to create a hierarchically structured vascular system. Vessel regression is an essential process to remove redundant vessel branches in order to adapt the final vessel density to the demands of the surrounding tissue. How exactly vessel regression occurs and whether and to which extent cell death contributes to this process has been in the focus of several studies within the last decade. On top, recent findings challenge our simplistic view of the cell death signaling machinery as a sole executer of cellular demise, as emerging evidences suggest that some of the classic cell death regulators even promote blood vessel formation. This review summarizes our current knowledge on the role of the cell death signaling machinery with a focus on the apoptosis and necroptosis signaling pathways during blood vessel formation in development and pathology.


Asunto(s)
Vasos Sanguíneos/citología , Muerte Celular , Endotelio Vascular/citología , Neovascularización Patológica , Neovascularización Fisiológica , Animales , Humanos , Transducción de Señal
2.
Cell Metab ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39270655

RESUMEN

Endothelial cells (ECs) not only form passive blood conduits but actively contribute to nutrient transport and organ homeostasis. The role of ECs in glucose homeostasis is, however, poorly understood. Here, we show that, in skeletal muscle, endothelial glucose transporter 1 (Glut1/Slc2a1) controls glucose uptake via vascular metabolic control of muscle-resident macrophages without affecting transendothelial glucose transport. Lowering endothelial Glut1 via genetic depletion (Glut1ΔEC) or upon a short-term high-fat diet increased angiocrine osteopontin (OPN/Spp1) secretion. This promoted resident muscle macrophage activation and proliferation, which impaired muscle insulin sensitivity. Consequently, co-deleting Spp1 from ECs prevented macrophage accumulation and improved insulin sensitivity in Glut1ΔEC mice. Mechanistically, Glut1-dependent endothelial glucose metabolic rewiring increased OPN in a serine metabolism-dependent fashion. Our data illustrate how the glycolytic endothelium creates a microenvironment that controls resident muscle macrophage phenotype and function and directly links resident muscle macrophages to the maintenance of muscle glucose homeostasis.

3.
EMBO Mol Med ; 14(6): e14121, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491615

RESUMEN

The gut has a specific vascular barrier that controls trafficking of antigens and microbiota into the bloodstream. However, the molecular mechanisms regulating the maintenance of this vascular barrier remain elusive. Here, we identified Caspase-8 as a pro-survival factor in mature intestinal endothelial cells that is required to actively maintain vascular homeostasis in the small intestine in an organ-specific manner. In particular, we find that deletion of Caspase-8 in endothelial cells results in small intestinal hemorrhages and bowel inflammation, while all other organs remained unaffected. We also show that Caspase-8 seems to be particularly needed in lymphatic endothelial cells to maintain gut homeostasis. Our work demonstrates that endothelial cell dysfunction, leading to the breakdown of the gut-vascular barrier, is an active driver of chronic small intestinal inflammation, highlighting the role of the intestinal vasculature as a safeguard of organ function.


Asunto(s)
Caspasa 8 , Células Endoteliales , Mucosa Intestinal , Animales , Caspasa 8/metabolismo , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Enteritis/enzimología , Enteritis/patología , Homeostasis , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestino Delgado/enzimología , Intestino Delgado/patología , Ratones
4.
EMBO Mol Med ; 13(4): e13933, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33666362

RESUMEN

Transmission of malaria-causing parasites to and by the mosquito relies on active parasite migration and constitutes bottlenecks in the Plasmodium life cycle. Parasite adaption to the biochemically and physically different environments must hence be a key evolutionary driver for transmission efficiency. To probe how subtle but physiologically relevant changes in environmental elasticity impact parasite migration, we introduce 2D and 3D polyacrylamide gels to study ookinetes, the parasite forms emigrating from the mosquito blood meal and sporozoites, the forms transmitted to the vertebrate host. We show that ookinetes adapt their migratory path but not their speed to environmental elasticity and are motile for over 24 h on soft substrates. In contrast, sporozoites evolved more short-lived rapid gliding motility for rapidly crossing the skin. Strikingly, sporozoites are highly sensitive to substrate elasticity possibly to avoid adhesion to soft endothelial cells on their long way to the liver. Hence, the two migratory stages of Plasmodium evolved different strategies to overcome the physical challenges posed by the respective environments and barriers they encounter.


Asunto(s)
Malaria , Parásitos , Plasmodium , Animales , Elasticidad , Células Endoteliales , Esporozoítos
5.
Cell Rep ; 36(7): 109522, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34407407

RESUMEN

Neuro-vascular communication is essential to synchronize central nervous system development. Here, we identify angiopoietin/Tie2 as a neuro-vascular signaling axis involved in regulating dendritic morphogenesis of Purkinje cells (PCs). We show that in the developing cerebellum Tie2 expression is not restricted to blood vessels, but it is also present in PCs. Its ligands angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) are expressed in neural cells and endothelial cells (ECs), respectively. PC-specific deletion of Tie2 results in reduced dendritic arborization, which is recapitulated in neural-specific Ang1-knockout and Ang2 full-knockout mice. Mechanistically, RNA sequencing reveals that Tie2-deficient PCs present alterations in gene expression of multiple genes involved in cytoskeleton organization, dendritic formation, growth, and branching. Functionally, mice with deletion of Tie2 in PCs present alterations in PC network functionality. Altogether, our data propose Ang/Tie2 signaling as a mediator of intercellular communication between neural cells, ECs, and PCs, required for proper PC dendritic morphogenesis and function.


Asunto(s)
Angiopoyetina 2/metabolismo , Dendritas/metabolismo , Morfogénesis , Células de Purkinje/metabolismo , Receptor TIE-2/metabolismo , Transducción de Señal , Angiopoyetina 1/metabolismo , Animales , Cerebelo/irrigación sanguínea , Cerebelo/crecimiento & desarrollo , Eliminación de Gen , Regulación de la Expresión Génica , Integrasas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Especificidad de Órganos
6.
J Clin Invest ; 129(12): 5092-5107, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31454332

RESUMEN

During developmental angiogenesis, blood vessels grow and remodel to ultimately build a hierarchical vascular network. Whether, how, cell death signaling molecules contribute to blood vessel formation is still not well understood. Caspase-8 (Casp-8), a key protease in the extrinsic cell death-signaling pathway, regulates cell death via both apoptosis and necroptosis. Here, we show that expression of Casp-8 in endothelial cells (ECs) is required for proper postnatal retina angiogenesis. EC-specific Casp-8-KO pups (Casp-8ECKO) showed reduced retina angiogenesis, as the loss of Casp-8 reduced EC proliferation, sprouting, and migration independently of its cell death function. Instead, the loss of Casp-8 caused hyperactivation of p38 MAPK downstream of receptor-interacting serine/threonine protein kinase 3 (RIPK3) and destabilization of vascular endothelial cadherin (VE-cadherin) at EC junctions. In a mouse model of oxygen-induced retinopathy (OIR) resembling retinopathy of prematurity (ROP), loss of Casp-8 in ECs was beneficial, as pathological neovascularization was reduced in Casp-8ECKO pups. Taking these data together, we show that Casp-8 acts in a cell death-independent manner in ECs to regulate the formation of the retina vasculature and that Casp-8 in ECs is mechanistically involved in the pathophysiology of ROP.


Asunto(s)
Caspasa 8/metabolismo , Neovascularización Patológica , Neovascularización Fisiológica , Retina/embriología , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Cadherinas/metabolismo , Muerte Celular , Movimiento Celular , Proliferación Celular , Células Endoteliales/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pulmón/embriología , Ratones , Ratones Noqueados , Necroptosis , Oxígeno/metabolismo , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Cell Rep ; 19(7): 1378-1393, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28514658

RESUMEN

The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/citología , Proteína Ligando Fas/metabolismo , Macrófagos/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Neuritas/metabolismo , Unión Proteica , Retina/crecimiento & desarrollo , Retina/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Receptor fas/metabolismo , Familia-src Quinasas/metabolismo
8.
Cell Rep ; 12(11): 1761-73, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26344773

RESUMEN

Tie1 is a mechanistically poorly characterized endothelial cell (EC)-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2. Tie1 was identified as an EC activation marker that is expressed during angiogenesis by a subset of angiogenic tip and remodeling stalk cells and downregulated in the adult quiescent vasculature. Functionally, Tie1 expression by angiogenic EC contributes to shaping the tip cell phenotype by negatively regulating Tie2 surface presentation. In contrast, Tie1 acts in remodeling stalk cells cooperatively to sustain Tie2 signaling. Collectively, our data support an interactive model of Tie1 and Tie2 function, in which dynamically regulated Tie1 versus Tie2 expression determines the net positive or negative effect of Tie1 on Tie2 signaling.


Asunto(s)
Receptor TIE-1/fisiología , Receptor TIE-2/fisiología , Remodelación Vascular/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Células Madre Embrionarias/citología , Células Endoteliales/citología , Células Endoteliales/enzimología , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Receptor TIE-1/genética , Receptor TIE-1/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Vasos Retinianos/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA