Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(10): e1011728, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37856551

RESUMEN

Insectivorous Old World horseshoe bats (Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats (Rousettus aegyptiacus) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats (Eptesicus fuscus) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats (Artibeus jamaicensis) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4+ helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-ß, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptible to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Pandemias , Jamaica , Linfocitos T Reguladores
2.
Glia ; 71(9): 2154-2179, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37199240

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide, with a greater prevalence in men than women. The etiology of PD is largely unknown, although environmental exposures and neuroinflammation are linked to protein misfolding and disease progression. Activated microglia are known to promote neuroinflammation in PD, but how environmental agents interact with specific innate immune signaling pathways in microglia to stimulate conversion to a neurotoxic phenotype is not well understood. To determine how nuclear factor kappa B (NF-κB) signaling dynamics in microglia modulate neuroinflammation and dopaminergic neurodegeneration, we generated mice deficient in NF-κB activation in microglia (CX3CR1-Cre::IKK2fl/fl ) and exposed them to 2.5 mg/kg/day of rotenone for 14 days, followed by a 14-day post-lesioning incubation period. We postulated that inhibition of NF-κB signaling in microglia would reduce overall inflammatory injury in lesioned mice. Subsequent analysis indicated decreased expression of the NF-κB-regulated autophagy gene, sequestosome 1 (p62), in microglia, which is required for targeting ubiquitinated α-synuclein (α-syn) for lysosomal degradation. Knock-out animals had increased accumulation of misfolded α-syn within microglia, despite an overall reduction in neurodegeneration. Interestingly, this occurred more prominently in males. These data suggest that microglia play key biological roles in the degradation and clearance of misfolded α-syn and this process works in concert with the innate immune response associated with neuroinflammation. Importantly, the accumulation of misfolded α-syn protein aggregates alone did not increase neurodegeneration following exposure to rotenone but required the NF-κB-dependent inflammatory response in microglia.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Masculino , Femenino , Ratones , Animales , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , FN-kappa B/metabolismo , Rotenona/toxicidad , Rotenona/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/metabolismo , Autofagia , Neuronas Dopaminérgicas/metabolismo
3.
PLoS Pathog ; 17(5): e1009585, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34010360

RESUMEN

Coronavirus disease-19 (COVID-19) emerged in late 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and may have infected an intermediate host prior to spillover into humans. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 6 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood-brain barrier. Despite this, no conspicuous signs of disease were observed, and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, including IFNα, IFNß, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission and localization into the olfactory bulb, recapitulating human neuropathology. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources determined the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 respiratory disease and neuropathogenesis, and that they have the potential to serve as secondary reservoir hosts in North America.


Asunto(s)
COVID-19/fisiopatología , COVID-19/transmisión , Peromyscus/virología , Enfermedades de los Roedores/transmisión , Animales , Encéfalo/patología , Encéfalo/virología , COVID-19/patología , Modelos Animales de Enfermedad , Reservorios de Enfermedades , Susceptibilidad a Enfermedades , Femenino , Masculino , Enfermedades de los Roedores/patología , Enfermedades de los Roedores/virología , Glicoproteína de la Espiga del Coronavirus/genética , Replicación Viral
4.
Chem Res Toxicol ; 36(6): 971-981, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37279407

RESUMEN

Exposure to polychlorinated biphenyls (PCBs) is associated with developmental neurotoxicity and neurodegenerative disorders; however, the underlying mechanisms of pathogenesis are unknown. Existing literature has focused mainly on using neurons as a model system to study mechanisms of PCB-mediated neurotoxicity, overlooking the role of glial cells, such as astrocytes. As normal brain function is largely astrocyte-dependent, we hypothesize that astrocytes play an important role in PCB-mediated injury to neurons. We assessed the toxicity of two commercial PCB mixtures, Aroclor 1016 and Aroclor 1254, and a non-Aroclor PCB mixture found in residential air called the Cabinet mixture, all of which contain lower chlorinated PCBs (LC-PCBs) found in indoor and outdoor air. We further assessed the toxicity of five abundant airborne LC-PCBs and their corresponding human-relevant metabolites in vitro models of astrocytes, namely, the C6 cell line and primary astrocytes isolated from Sprague-Dawley rats and C57BL/6 mice. PCB52 and its human-relevant hydroxylated and sulfated metabolites were found to be the most toxic compounds. No significant sex-dependent cell viability differences were observed in rat primary astrocytes. Based on the equilibrium partitioning model, it was predicted that the partitioning of LC-PCBs and their corresponding metabolites in biotic and abiotic compartments of the cell culture system is structure-dependent and that the observed toxicity is consistent with this prediction. This study, for the first time, shows that astrocytes are sensitive targets of LC-PCBs and their human-relevant metabolites and that further research to identify mechanistic targets of PCB exposure in glial cells is necessary.


Asunto(s)
Bifenilos Policlorados , Ratones , Humanos , Ratas , Animales , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/metabolismo , Astrocitos/metabolismo , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Relación Estructura-Actividad
5.
Neurobiol Dis ; 167: 105685, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35257879

RESUMEN

Rotenone is a naturally occurring insecticide that inhibits mitochondrial complex I and leads to neurochemical and neuropathological deficits closely resembling those in Parkinson's disease (PD). Deficits include loss of dopaminergic neurons (DAn) in the substantia nigra pars compacta (SNpc), decreased dopamine levels and aggregation of misfolded alpha-synuclein (p129). In rat models of rotenone-induced parkinsonism, the progression of neuronal injury has been associated with activation of microglia and astrocytes. However, these neuroinflammatory changes have been challenging to study in mice, in part because the systemic rotenone exposure model utilized in rats is more toxic to mice. To establish a reproducible murine model of rotenone-induced PD, we therefore investigated the progression of neuroinflammation, protein aggregation and DAn loss in C57Bl/6 mice by exposing animals to 2.5 mg/kg/day rotenone for 14 days, followed by a two-week period where neuroinflammation is allowed to progress. Our results indicate that initial cellular dysfunction leads to increased formation of proteinase K-resistant p129 aggregates in the caudate-putamen and SNpc. Clearance of these aggregates was region- and cell type-specific, with the early appearance of reactive astrocytes coinciding with accumulation of p129 in the SNpc. Phagocytic microglial cells containing p129 aggregates were observed proximal to p129+ DAn in the SNpc. The majority of neuronal loss in the SNpc occurred during the two-week period after rotenone exposure, subsequent to the peak of microglia and astrocyte activation, as well as the peak of p129 aggregation. A secondary peak of p129 coincided with neurodegeneration at later timepoints. These data indicate that systemic exposure to rotenone in C57Bl/6 mice causes progressive accumulation and regional spread of p129 aggregates that precede maximal loss of DAn. Thus, activation of glial cells and aggregation of p129 appear to drive neuronal loss following neurotoxic stress imposed by exposure to rotenone.


Asunto(s)
Neuronas Dopaminérgicas , Rotenona , Animales , Neuronas Dopaminérgicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Agregado de Proteínas , Ratas , Rotenona/toxicidad , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo
6.
J Neurooncol ; 146(1): 25-39, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31754919

RESUMEN

INTRODUCTION: The orphan nuclear receptor 4A2 (NR4A2) has been extensively characterized in subcellular regions of the brain and is necessary for the function of dopaminergic neurons. The NR4A2 ligand, 1,1-bis (31-indoly1)-1-(p-chlorophenyl)methane (DIM-C-pPhCl) inhibits markers of neuroinflammation and degeneration in mouse models and in this study we investigated expression and function of NR4A2 in glioblastoma (GBM). METHODS: Established and patient-derived cell lines were used as models and the expression and functions of NR4A2 were determined by western blots and NR4A2 gene silencing by antisense oligonucleotides respectively. Effects of NR4A2 knockdown and DIM-C-pPhCl on cell growth, induction of apoptosis (Annexin V Staining) and migration/invasion (Boyden chamber and spheroid invasion assay) and transactivation of NR4A2-regulated reporter genes were determined. Tumor growth was investigated in athymic nude mice bearing U87-MG cells as xenografts. RESULTS: NR4A2 knockdown and DIM-C-pPhCl inhibited GBM cell and tumor growth, induced apoptosis and inhibited migration and invasion of GBM cells. DIM-C-pPhCl and related analogs also inhibited NR4A2-regulated transactivation (luciferase activity) confirming that DIM-C-pPhCl acts as an NR4A2 antagonist and blocks NR4A2-dependent pro-oncogenic responses in GBM. CONCLUSION: We demonstrate for the first time that NR4A2 is pro-oncogenic in GBM and thus a potential druggable target for patients with tumors expressing this receptor. Moreover, our bis-indole-derived NR4A2 antagonists represent a novel class of anti-cancer agents with potential future clinical applications for treating GBM.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Indoles/farmacología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Movimiento Celular , Proliferación Celular , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Ratones , Ratones Desnudos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Pronóstico , ARN Interferente Pequeño/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Neurobiol Dis ; 127: 193-209, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30818064

RESUMEN

Neuroinflammatory activation of glia is considered a pathological hallmark of Parkinson's disease (PD) and is seen in both human PD patients and in animal models of PD; however, the relative contributions of these cell types, especially astrocytes, to the progression of disease is not fully understood. The transcription factor, nuclear factor kappa B (NFκB), is an important regulator of inflammatory gene expression in glia and is activated by multiple cellular stress signals through the kinase complex, IKK2. We sought to determine the role of NFκB in modulating inflammatory activation of astrocytes in a model of PD by generating a conditional knockout mouse (hGfapcre/Ikbk2F/F) in which IKK2 is specifically deleted in astrocytes. Measurements of IKK2 revealed a 70% deletion rate of IKK2 within astrocytes, as compared to littermate controls (Ikbk2F/F). Use of this mouse in a subacute, progressive model of PD through exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp) revealed significant protection in exposed mice to direct and progressive loss of dopaminergic neurons in the substantia nigra (SN). hGfapcre/Ikbk2F/F mice were also protected against MPTPp-induced loss in motor activity, loss of striatal proteins, and genomic alterations in nigral NFκB gene expression, but were not protected from loss of striatal catecholamines. Neuroprotection in hGfapcre/Ikbk2F/F mice was associated with inhibition of MPTPp-induced astrocytic expression of inflammatory genes and protection against nitrosative stress and apoptosis in neurons. These data indicate that deletion of IKK2 within astrocytes is neuroprotective in the MPTPp model of PD and suggests that reactive astrocytes directly contribute the potentiation of dopaminergic pathology.


Asunto(s)
Astrocitos/metabolismo , Neuronas Dopaminérgicas/metabolismo , Quinasa I-kappa B/metabolismo , Intoxicación por MPTP/metabolismo , FN-kappa B/metabolismo , Animales , Muerte Celular/fisiología , Neuronas Dopaminérgicas/patología , Quinasa I-kappa B/genética , Intoxicación por MPTP/patología , Masculino , Ratones , Ratones Noqueados , FN-kappa B/genética , Probenecid , Sustancia Negra/metabolismo , Sustancia Negra/patología
8.
Mol Pharmacol ; 94(4): 1174-1186, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30111648

RESUMEN

Inflammatory activation of glial cells promotes loss of dopaminergic neurons in Parkinson disease. The transcription factor nuclear factor κB (NF-κB) regulates the expression of multiple neuroinflammatory cytokines and chemokines in activated glial cells that are damaging to neurons. Thus, inhibition of NF-κB signaling in glial cells could be a promising therapeutic strategy for the prevention of neuroinflammatory injury. Nuclear orphan receptors in the NR4A family, including NR4A1 (Nur77) and NR4A2 (Nurr1), can inhibit the inflammatory effects of NF-κB, but no approved drugs target these receptors. Therefore, we postulated that a recently developed NR4A receptor ligand, 1,1bis (3'indolyl) 1(pmethoxyphenyl) methane (C-DIM5), would suppress NF-κB-dependent inflammatory gene expression in astrocytes after treatment with 1-methyl-4-phenyl 1, 2, 3, 6-tetrahydropyridine (MPTP) and the inflammatory cytokines interferon γ and tumor necrosis factor α C-DIM5 increased expression of Nur77 mRNA and suppressed expression of multiple neuroinflammatory genes. C-DIM5 also inhibited the expression of NFκB-regulated inflammatory and apoptotic genes in quantitative polymerase chain reaction array studies and effected p65 binding to unique genes in chromatin immunoprecipitation next-generation sequencing experiments but did not prevent p65 translocation to the nucleus, suggesting a nuclear-specific mechanism. C-DIM5 prevented nuclear export of Nur77 in astrocytes induced by MPTP treatment and simultaneously recruited Nurr1 to the nucleus, consistent with known transrepressive properties of this receptor. Combined RNAi knockdown of Nur77 and Nurr1 inhibited the anti-inflammatory activity of C-DIM5, demonstrating that C-DIM5 requires these receptors to inhibit NF-κB. Collectively, these data demonstrate that NR4A1/Nur77 and NR4A2/Nurr1 dynamically regulated inflammatory gene expression in glia by modulating the transcriptional activity of NF-κB.


Asunto(s)
Astrocitos/fisiología , Inflamación/genética , FN-kappa B/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Transducción de Señal/genética , Animales , Apoptosis/genética , Núcleo Celular/genética , Citocinas/genética , Neuronas Dopaminérgicas/fisiología , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos/genética , Neuroglía/fisiología , Transcripción Genética/genética , Factor de Necrosis Tumoral alfa/genética
9.
J Neuroinflammation ; 15(1): 324, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463564

RESUMEN

BACKGROUND: Exposure to increased manganese (Mn) causes inflammation and neuronal injury in the cortex and basal ganglia, resulting in neurological symptoms resembling Parkinson's disease. The mechanisms underlying neuronal death from exposure to Mn are not well understood but involve inflammatory activation of microglia and astrocytes. Expression of neurotoxic inflammatory genes in glia is highly regulated through the NF-κB pathway, but factors modulating neurotoxic glial-glial and glial-neuronal signaling by Mn are not well understood. METHODS: We examined the role of NF-κB in Mn-induced neurotoxicity by exposing purified microglia, astrocytes (from wild-type and astrocyte-specific IKK knockout mice), and mixed glial cultures to varying Mn concentrations and then treating neurons with the conditioned media (GCM) of each cell type. We hypothesized that mixed glial cultures exposed to Mn (0-100 µM) would enhance glial activation and neuronal death compared to microglia, wild-type astrocytes, or IKK-knockout astrocytes alone or in mixed cultures. RESULTS: Mixed glial cultures treated with 0-100 µM Mn for 24 h showed the most pronounced effect of increased expression of inflammatory genes including inducible nitric oxide synthase (Nos2), Tnf, Ccl5, Il6, Ccr2, Il1b, and the astrocyte-specific genes, C3 and Ccl2. Gene deletion of IKK2 in astrocytes dramatically reduced cytokine release in Mn-treated mixed glial cultures. Measurement of neuronal viability and apoptosis following exposure to Mn-GCM demonstrated that mixed glial cultures induced greater neuronal death than either cell type alone. Loss of IKK in astrocytes also decreased neuronal death compared to microglia alone, wild-type astrocytes, or mixed glia. CONCLUSIONS: This suggests that astrocytes are a critical mediator of Mn neurotoxicity through enhanced expression of inflammatory cytokines and chemokines, including those most associated with a reactive phenotype such as CCL2 but not C3.


Asunto(s)
Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Manganeso/farmacología , Neuroglía/fisiología , Neuronas/fisiología , Transducción de Señal/efectos de los fármacos , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Muerte Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Inflamación/inducido químicamente , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/metabolismo , Neuroglía/química , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , ARN Interferente Pequeño/farmacología
10.
J Pharmacol Exp Ther ; 365(3): 636-651, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29626009

RESUMEN

The orphan nuclear receptor Nurr1 (also called nuclear receptor-4A2) regulates inflammatory gene expression in glial cells, as well as genes associated with homeostatic and trophic function in dopaminergic neurons. Despite these known functions of Nurr1, an endogenous ligand has not been discovered. We postulated that the activation of Nurr1 would suppress the activation of glia and thereby protect against loss of dopamine (DA) neurons after subacute lesioning with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our previous studies have shown that a synthetic Nurr1 ligand, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12), suppresses inflammatory gene expression in primary astrocytes and induces a dopaminergic phenotype in neurons. Pharmacokinetic analysis of C-DIM12 in mice by liquid chromatography-mass spectrometry demonstrated that approximately three times more compound concentrated in the brain than in plasma. Mice treated with four doses of MPTP + probenecid over 14 days were monitored for neurobehavioral function, loss of dopaminergic neurons, and glial activation. C-DIM12 protected against the loss of DA neurons in the substantia nigra pars compacta and DA terminals in the striatum, maintained a ramified phenotype in microglia, and suppressed activation of astrocytes. In vitro reporter assays demonstrated that C-DIM12 was an effective activator of Nurr1 transcription in neuronal cell lines. Computational modeling of C-DIM12 binding to the three-dimensional structure of human Nurr1 identified a high-affinity binding interaction with Nurr1 at the coactivator domain. Taken together, these data suggest that C-DIM12 is an activator of Nurr1 that suppresses glial activation and neuronal loss in vivo after treatment with MPTP, and that this receptor could be an efficacious target for disease modification in individuals with Parkinson's disease and related disorders.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Indoles/metabolismo , Indoles/farmacología , Neuroglía/efectos de los fármacos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Recuento de Células , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Regulación de la Expresión Génica/efectos de los fármacos , Indoles/farmacocinética , Indoles/uso terapéutico , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neuroglía/patología , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Fenotipo , Transducción de Señal/efectos de los fármacos , Distribución Tisular
11.
J Neuroinflammation ; 14(1): 99, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28476157

RESUMEN

BACKGROUND: As the primary immune response cell in the central nervous system, microglia constantly monitor the microenvironment and respond rapidly to stress, infection, and injury, making them important modulators of neuroinflammatory responses. In diseases such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and human immunodeficiency virus-induced dementia, activation of microglia precedes astrogliosis and overt neuronal loss. Although microgliosis is implicated in manganese (Mn) neurotoxicity, the role of microglia and glial crosstalk in Mn-induced neurodegeneration is poorly understood. METHODS: Experiments utilized immunopurified murine microglia and astrocytes using column-free magnetic separation. The effect of Mn on microglia was investigated using gene expression analysis, Mn uptake measurements, protein production, and changes in morphology. Additionally, gene expression analysis was used to determine the effect Mn-treated microglia had on inflammatory responses in Mn-exposed astrocytes. RESULTS: Immunofluorescence and flow cytometric analysis of immunopurified microglia and astrocytes indicated cultures were 97 and 90% pure, respectively. Mn treatment in microglia resulted in a dose-dependent increase in pro-inflammatory gene expression, transition to a mixed M1/M2 phenotype, and a de-ramified morphology. Conditioned media from Mn-exposed microglia (MCM) dramatically enhanced expression of mRNA for Tnf, Il-1ß, Il-6, Ccl2, and Ccl5 in astrocytes, as did exposure to Mn in the presence of co-cultured microglia. MCM had increased levels of cytokines and chemokines including IL-6, TNF, CCL2, and CCL5. Pharmacological inhibition of NF-κB in microglia using Bay 11-7082 completely blocked microglial-induced astrocyte activation, whereas siRNA knockdown of Tnf in primary microglia only partially inhibited neuroinflammatory responses in astrocytes. CONCLUSIONS: These results provide evidence that NF-κB signaling in microglia plays an essential role in inflammatory responses in Mn toxicity by regulating cytokines and chemokines that amplify the activation of astrocytes.


Asunto(s)
Astrocitos/metabolismo , Mediadores de Inflamación/metabolismo , Manganeso/toxicidad , Microglía/metabolismo , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos
12.
J Virol ; 90(12): 5785-96, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27053560

RESUMEN

UNLABELLED: Venezuelan and western equine encephalitis viruses (VEEV and WEEV; Alphavirus; Togaviridae) are mosquito-borne pathogens causing central nervous system (CNS) disease in humans and equids. Adult CD-1 mice also develop CNS disease after infection with VEEV and WEEV. Adult CD-1 mice infected by the intranasal (i.n.) route, showed that VEEV and WEEV enter the brain through olfactory sensory neurons (OSNs). In this study, we injected the mouse footpad with recombinant WEEV (McMillan) or VEEV (subtype IC strain 3908) expressing firefly luciferase (fLUC) to simulate mosquito infection and examined alphavirus entry in the CNS. Luciferase expression served as a marker of infection detected as bioluminescence (BLM) by in vivo and ex vivo imaging. BLM imaging detected WEEV and VEEV at 12 h postinoculation (hpi) at the injection site (footpad) and as early as 72 hpi in the brain. BLM from WEEV.McM-fLUC and VEEV.3908-fLUC injections was initially detected in the brain's circumventricular organs (CVOs). No BLM activity was detected in the olfactory neuroepithelium or OSNs. Mice were also injected in the footpad with WEEV.McM expressing DsRed (Discosoma sp.) and imaged by confocal fluorescence microscopy. DsRed imaging supported our BLM findings by detecting WEEV in the CVOs prior to spreading along the neuronal axis to other brain regions. Taken together, these findings support our hypothesis that peripherally injected alphaviruses enter the CNS by hematogenous seeding of the CVOs followed by centripetal spread along the neuronal axis. IMPORTANCE: VEEV and WEEV are mosquito-borne viruses causing sporadic epidemics in the Americas. Both viruses are associated with CNS disease in horses, humans, and mouse infection models. In this study, we injected VEEV or WEEV, engineered to express bioluminescent or fluorescent reporters (fLUC and DsRed, respectively), into the footpads of outbred CD-1 mice to simulate transmission by a mosquito. Reporter expression serves as detectable bioluminescent and fluorescent markers of VEEV and WEEV replication and infection. Bioluminescence imaging, histological examination, and confocal fluorescence microscopy were used to identify early entry sites of these alphaviruses in the CNS. We observed that specific areas of the brain (circumventricular organs [CVOs]) consistently showed the earliest signs of infection with VEEV and WEEV. Histological examination supported VEEV and WEEV entering the brain of mice at specific sites where the blood-brain barrier is naturally absent.


Asunto(s)
Barrera Hematoencefálica/virología , Encéfalo/virología , Virus de la Encefalitis Equina Venezolana/fisiología , Virus de la Encefalitis Equina del Oeste/fisiología , Encefalomielitis Equina Venezolana/virología , Internalización del Virus , Adulto , Animales , Barrera Hematoencefálica/fisiopatología , Encéfalo/patología , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/crecimiento & desarrollo , Virus de la Encefalitis Equina del Oeste/genética , Virus de la Encefalitis Equina del Oeste/crecimiento & desarrollo , Humanos , Luciferasas , Mediciones Luminiscentes , Ratones , Neuronas Receptoras Olfatorias/virología , Imagen Óptica/métodos , Carga Viral
13.
Mol Pharmacol ; 87(6): 1021-34, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25858541

RESUMEN

NR4A family orphan nuclear receptors are an important class of transcription factors for development and homeostasis of dopaminergic neurons that also inhibit expression of inflammatory genes in glial cells. The identification of NR4A2 (Nurr1) as a suppressor of nuclear factor κB (NF-κB)-related neuroinflammatory genes in microglia and astrocytes suggests that this receptor could be a target for pharmacologic intervention in neurologic disease, but compounds that promote this activity are lacking. Selected diindolylmethane compounds (C-DIMs) have been shown to activate or inactivate nuclear receptors, including Nurr1, in cancer cells and also suppress astrocyte inflammatory signaling in vitro. Based upon these data, we postulated that C-DIM12 [1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane] would suppress inflammatory signaling in microglia by a Nurr1-dependent mechanism. C-DIM12 inhibited lipopolysaccharide (LPS)-induced expression of NF-κB-regulated genes in BV-2 microglia including nitric oxide synthase (NOS2), interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2), and the effects were attenuated by Nurr1-RNA interference. Additionally, C-DIM12 decreased NF-κB activation in NF-κB-GFP (green fluorescent protein) reporter cells and enhanced nuclear translocation of Nurr1 primary microglia. Chromatin immunoprecipitation assays indicated that C-DIM12 decreased lipopolysaccharide-induced p65 binding to the NOS2 promoter and concurrently enhanced binding of Nurr1 to the p65-binding site. Consistent with these findings, C-DIM12 also stabilized binding of the Corepressor for Repressor Element 1 Silencing Transcription Factor (CoREST) and the Nuclear Receptor Corepressor 2 (NCOR2). Collectively, these data identify C-DIM12 as a modulator of Nurr1 activity that results in inhibition of NF-κB-dependent gene expression in glial cells by stabilizing nuclear corepressor proteins, which reduces binding of p65 to inflammatory gene promoters.


Asunto(s)
Indoles/farmacología , Microglía/efectos de los fármacos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Línea Celular , Proteínas Co-Represoras , Citocinas/genética , Citocinas/metabolismo , Expresión Génica , Humanos , Lipopolisacáridos/farmacología , Ratones , Microglía/inmunología , Microglía/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Regiones Promotoras Genéticas , Transporte de Proteínas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor de Transcripción ReIA/metabolismo , Transcripción Genética
14.
Am J Physiol Regul Integr Comp Physiol ; 309(2): R138-47, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25994957

RESUMEN

We reported that brain (pro)renin receptor (PRR) expression levels are elevated in DOCA-salt-induced hypertension; however, the underlying mechanism remained unknown. To address whether ANG II type 1 receptor (AT1R) signaling is involved in this regulation, we implanted a DOCA pellet and supplied 0.9% saline as the drinking solution to C57BL/6J mice. Sham pellet-implanted mice that were provided regular drinking water served as controls. Concurrently, mice were intracerebroventricularly infused with the AT1R blocker losartan, angiotensin-converting-enzyme inhibitor captopril, or artificial cerebrospinal fluid for 3 wk. Intracerebroventricular infusion of losartan or captopril attenuated DOCA-salt-induced PRR mRNA elevation in the paraventricular nucleus of the hypothalamus, suggesting a role for ANG II/AT1R signaling in regulating PRR expression during DOCA-salt hypertension. To test which ANG II/AT1R downstream transcription factors were involved in PRR regulation, we treated Neuro-2A cells with ANG II with or without CREB (cAMP response element-binding protein) or AP-1 (activator protein-1) inhibitors, or CREB siRNA. CREB and AP-1 inhibitors, as well as CREB knockdown abolished ANG II-induced increases in PRR levels. ANG II also induced PRR upregulation in primary cultured neurons. Chromatin immunoprecipitation assays revealed that ANG II treatment increased CREB binding to the endogenous PRR promoter in both cultured neurons and hypothalamic tissues of DOCA-salt hypertensive mice. This increase in CREB activity was reversed by AT1R blockade. Collectively, these findings indicate that ANG II acts via AT1R to upregulate PRR expression both in cultured cells and in DOCA-salt hypertensive mice by increasing CREB binding to the PRR promoter.


Asunto(s)
Angiotensina II/metabolismo , Proteína de Unión a CREB/metabolismo , Hipertensión/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/metabolismo , Sistema Renina-Angiotensina , Bloqueadores del Receptor Tipo 1 de Angiotensina II/administración & dosificación , Inhibidores de la Enzima Convertidora de Angiotensina/administración & dosificación , Animales , Sitios de Unión , Proteína de Unión a CREB/genética , Línea Celular , Acetato de Desoxicorticosterona , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Infusiones Intraventriculares , Ratones Endogámicos C57BL , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Fosforilación , Regiones Promotoras Genéticas , ATPasas de Translocación de Protón/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Superficie Celular/genética , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal , Cloruro de Sodio , Factores de Tiempo , Factor de Transcripción AP-1/metabolismo , Transfección , Regulación hacia Arriba , Receptor de Prorenina
15.
Toxicol Res (Camb) ; 13(2): tfae059, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38655145

RESUMEN

The modified phytochemical derivative, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (C-DIM12), has been identified as a potential therapeutic platform based on its capacity to improve disease outcomes in models of neurodegeneration and cancer. However, comprehensive safety studies investigating pathology and off-target binding have not been conducted. To address this, we administered C-DIM12 orogastrically to outbred male CD-1 mice for 7 days (50 mg/kg/day, 200 mg/kg/day, and 300 mg/kg/day) and investigated changes in hematology, clinical chemistry, and whole-body tissue pathology. We also delivered a single dose of C-DIM12 (1 mg/kg, 5 mg/kg, 25 mg/kg, 100 mg/kg, 300 mg/kg, 1,000 mg/kg) orogastrically to male and female beagle dogs and investigated hematology and clinical chemistry, as well as plasma pharmacokinetics over 48-h. Consecutive in-vitro off-target binding through inhibition was performed with 10 µM C-DIM12 against 68 targets in tandem with predictive off-target structural binding capacity. These data show that the highest dose C-DIM12 administered in each species caused modest liver pathology in mouse and dog, whereas lower doses were unremarkable. Off-target screening and predictive modeling of C-DIM12 show inhibition of serine/threonine kinases, calcium signaling, G-protein coupled receptors, extracellular matrix degradation, and vascular and transcriptional regulation pathways. Collectively, these data demonstrate that low doses of C-DIM12 do not induce pathology and are capable of modulating targets relevant to neurodegeneration and cancer.

16.
Neurotoxicology ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960072

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30mg/kg/day or 100mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.

17.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659796

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days, immediately followed by oral treatment with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.

18.
Biomolecules ; 14(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38540704

RESUMEN

Bis-indole derived compounds such as 1,1-bis(3'-indolyl)-1-(3,5-disubstitutedphenyl) methane (DIM-3,5) and the corresponding 4-hydroxyl analogs (DIM8-3,5) are NR4A1 ligands that act as inverse NR4A1 agonists and are potent inhibitors of tumor growth. The high potency of several DIM-3,5 analogs (IC50 < 1 mg/kg/day), coupled with the >60% similarity of the ligand-binding domains (LBDs) of NR4A1 and NR4A2 and the pro-oncogenic activities of both receptors lead us to hypothesize that these compounds may act as dual NR4A1 and NR4A2 ligands. Using a fluorescence binding assay, it was shown that 22 synthetic DIM8-3,5 and DIM-3,5 analogs bound the LBD of NR4A1 and NR4A2 with most KD values in the low µM range. Moreover, the DIM-3,5 and DIM8-3,5 analogs also decreased NR4A1- and NR4A2-dependent transactivation in U87G glioblastoma cells transfected with GAL4-NR4A1 or GAL4-NR4A2 chimeras and a UAS-luciferase reporter gene construct. The DIM-3,5 and DIM8-3,5 analogs were cytotoxic to U87 glioblastoma and RKO colon cancer cells and the DIM-3,5 compounds were more cytotoxic than the DIM8-3,5 compounds. These studies show that both DIM-3,5 and DIM8-3,5 compounds previously identified as NR4A1 ligands bind both NR4A1 and NR4A2 and are dual NR4A1/2 ligands.


Asunto(s)
Glioblastoma , Humanos , Ligandos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Línea Celular Tumoral , Indoles/farmacología , Indoles/química , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
19.
J Pharmacol Exp Ther ; 345(1): 125-38, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23318470

RESUMEN

There are currently no registered drugs that slow the progression of neurodegenerative diseases, in part because translation from animal models to the clinic has been hampered by poor distribution to the brain. The present studies examined a selected series of para-phenyl-substituted diindolylmethane (C-DIM) compounds that display anti-inflammatory and neuroprotective efficacy in vitro. We postulated that the pharmacokinetic behavior of C-DIM compounds after oral administration would correlate with neuroprotective efficacy in vivo in a mouse model of Parkinson's disease. Pharmacokinetics and metabolism of 1,1-bis(3'-indolyl)-1-(p-methoxyphenyl)methane (C-DIM5), 1,1-bis(3'-indolyl)-1-(phenyl)methane, 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (C-DIM8), and 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12) were determined in plasma and brain of C57Bl/6 mice after oral and intravenous administration at 10 and 1 mg/Kg, respectively. Putative metabolites were measured in plasma, liver, and urine. C-DIM compounds given orally displayed the highest area under the curve, Cmax, and Tmax levels, and C-DIM12 exhibited the most favorable pharmacokinetics of the compounds tested. Oral bioavailability of each compound ranged from 6% (C-DIM8) to 42% (C-DIM12). After pharmacokinetic studies, the neuroprotective efficacy of C-DIM5, C-DIM8, and C-DIM12 (50 mg/Kg per oral) was examined in mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid for 14 days, a model of progressive neurodegeneration with a strong neuroinflammatory component. C-DIM5 and C-DIM12 given orally once daily after one week of exposure to MPTP and probenecid prevented further loss of dopaminergic neurons in the substantia nigra pars compacta and striatal dopamine terminals, indicating that these compounds could be effective therapeutic agents to prevent neurodegeneration.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Indoles/farmacocinética , Indoles/uso terapéutico , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/tratamiento farmacológico , Administración Oral , Animales , Antiinflamatorios/química , Cromatografía Líquida de Alta Presión , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Indoles/química , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Estructura Molecular , Fármacos Neuroprotectores/química , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Espectrometría de Masas en Tándem
20.
J Vet Intern Med ; 37(4): 1501-1506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37312432

RESUMEN

A 6-year-old female spayed Great Dane was evaluated for acute onset cluster seizures. Magnetic resonance imaging (MRI) identified a mass in the olfactory bulbs with a large mucoid component caudal to the primary mass. The mass was removed via transfrontal craniotomy and histopathology revealed a tyrosine crystalline-rich, fibrous meningioma with a high mitotic index. Repeat MRI at 6 months showed no detectable tumor regrowth. The dog is clinically normal with no seizures at the time of publication 10 months after surgery. This meningioma subtype is rare in humans. This unique meningioma occurred in a dog of younger age and uncommon breed for intracranial meningioma. Biological progression of this tumor subtype is unknown; however, growth rate might be slow despite the high mitotic index.


Asunto(s)
Enfermedades de los Perros , Neoplasias Meníngeas , Meningioma , Humanos , Femenino , Animales , Perros , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Meningioma/veterinaria , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Neoplasias Meníngeas/veterinaria , Convulsiones/veterinaria , Craneotomía/métodos , Craneotomía/veterinaria , Imagen por Resonancia Magnética/veterinaria , Tirosina , Enfermedades de los Perros/diagnóstico por imagen , Enfermedades de los Perros/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA