Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Cell ; 81(6): 1319-1336.e9, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33539788

RESUMEN

The human ubiquitin proteasome system, composed of over 700 ubiquitin ligases (E3s) and deubiquitinases (DUBs), has been difficult to characterize systematically and phenotypically. We performed chemical-genetic CRISPR-Cas9 screens to identify E3s/DUBs whose loss renders cells sensitive or resistant to 41 compounds targeting a broad range of biological processes, including cell cycle progression, genome stability, metabolism, and vesicular transport. Genes and compounds clustered functionally, with inhibitors of related pathways interacting similarly with E3s/DUBs. Some genes, such as FBXW7, showed interactions with many of the compounds. Others, such as RNF25 and FBXO42, showed interactions primarily with a single compound (methyl methanesulfonate for RNF25) or a set of related compounds (the mitotic cluster for FBXO42). Mutation of several E3s with sensitivity to mitotic inhibitors led to increased aberrant mitoses, suggesting a role for these genes in cell cycle regulation. Our comprehensive CRISPR-Cas9 screen uncovered 466 gene-compound interactions covering 25% of the interrogated E3s/DUBs.


Asunto(s)
Sistemas CRISPR-Cas , Mitosis , Transducción de Señal , Ubiquitina-Proteína Ligasas , Ubiquitina , Línea Celular , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Mol Cell ; 60(1): 3-4, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26431023

RESUMEN

CDC20 and CDH1 are well-established substrate receptors for the Anaphase Promoting Complex/Cyclosome (APC/C). In this issue of Molecular Cell, Lee et al. (2015) show that these adaptors can also target cell cycle proteins for destruction through a second ubiquitin ligase, Parkin.


Asunto(s)
Cadherinas/metabolismo , Proteínas Cdc20/metabolismo , Inestabilidad Genómica , Mitosis , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos
3.
PLoS Genet ; 16(6): e1008840, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32579556

RESUMEN

The S. cerevisiae ISR1 gene encodes a putative kinase with no ascribed function. Here, we show that Isr1 acts as a negative regulator of the highly-conserved hexosamine biosynthesis pathway (HBP), which converts glucose into uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the carbohydrate precursor to protein glycosylation, GPI-anchor formation, and chitin biosynthesis. Overexpression of ISR1 is lethal and, at lower levels, causes sensitivity to tunicamycin and resistance to calcofluor white, implying impaired protein glycosylation and reduced chitin deposition. Gfa1 is the first enzyme in the HBP and is conserved from bacteria and yeast to humans. The lethality caused by ISR1 overexpression is rescued by co-overexpression of GFA1 or exogenous glucosamine, which bypasses GFA1's essential function. Gfa1 is phosphorylated in an Isr1-dependent fashion and mutation of Isr1-dependent sites ameliorates the lethality associated with ISR1 overexpression. Isr1 contains a phosphodegron that is phosphorylated by Pho85 and subsequently ubiquitinated by the SCF-Cdc4 complex, largely confining Isr1 protein levels to the time of bud emergence. Mutation of this phosphodegron stabilizes Isr1 and recapitulates the overexpression phenotypes. As Pho85 is a cell cycle and nutrient responsive kinase, this tight regulation of Isr1 may serve to dynamically regulate flux through the HBP and modulate how the cell's energy resources are converted into structural carbohydrates in response to changing cellular needs.


Asunto(s)
Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Hexosaminas/biosíntesis , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Metabolismo Energético , Glucosa/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Mutación , Fosforilación , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Proteínas de Saccharomyces cerevisiae/genética , Uridina Difosfato N-Acetilglucosamina/metabolismo
4.
Mol Cell ; 53(1): 148-61, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24389104

RESUMEN

We have developed a technique, called Ubiquitin Ligase Substrate Trapping, for the isolation of ubiquitinated substrates in complex with their ubiquitin ligase (E3). By fusing a ubiquitin-associated (UBA) domain to an E3 ligase, we were able to selectively purify the polyubiquitinated forms of E3 substrates. Using ligase traps of eight different F box proteins (SCF specificity factors) coupled with mass spectrometry, we identified known, as well as previously unreported, substrates. Polyubiquitinated forms of candidate substrates associated with their cognate F box partner, but not other ligase traps. Interestingly, the four most abundant candidate substrates identified for the F box protein Saf1 were all vacuolar/lysosomal proteins. Analysis of one of these substrates, Prb1, showed that Saf1 selectively promotes ubiquitination of the unprocessed form of the zymogen. This suggests that Saf1 is part of a pathway that targets protein precursors for proteasomal degradation.


Asunto(s)
Proteínas F-Box/metabolismo , Lisosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Vacuolas/metabolismo , Proteínas F-Box/genética , Lisosomas/genética , Espectrometría de Masas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Ubiquitinadas/genética , Ubiquitinación/fisiología , Vacuolas/genética
5.
Curr Genet ; 67(1): 79-83, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33063175

RESUMEN

Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, integrating a variety of environmental signals to drive cellular growth. Isr1 is a negative regulator of the hexosamine biosynthesis pathway (HBP), which produces UDP-GlcNAc, an essential carbohydrate that is the building block of N-glycosylation, GPI anchors and chitin. Isr1 was recently shown to be regulated by phosphorylation by the nutrient-responsive CDK kinase Pho85, allowing it to be targeted for degradation by the SCFCDC4. Here, we show that while deletion of PHO85 stabilizes Isr1 in asynchronous cells, Isr1 is still unstable in mitotically arrested cells in a pho85∆ strain. We provide evidence to suggest that this is through phosphorylation by CDK1. Redundant targeting of Isr1 by two distinct kinases may allow for tight regulation of the HBP in response to different cellular signals.


Asunto(s)
Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Quinasas Ciclina-Dependientes/genética , Proteínas F-Box/genética , Mitosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Vías Biosintéticas/genética , Ciclo Celular/genética , Glucosamina/análogos & derivados , Glucosamina/genética , Glicosilación , Hexosaminas/genética , Fosforilación/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/genética
6.
EMBO Rep ; 20(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30420521

RESUMEN

Telomeres and the shelterin complex cap and protect the ends of chromosomes. Telomeres are flanked by the subtelomeric sequences that have also been implicated in telomere regulation, although their role is not well defined. Here, we show that, in Schizosaccharomyces pombe, the telomere-associated sequences (TAS) present on most subtelomeres are hyper-recombinogenic, have metastable nucleosomes, and unusual low levels of H3K9 methylation. Ccq1, a subunit of shelterin, protects TAS from nucleosome loss by recruiting the heterochromatic repressor complexes CLRC and SHREC, thereby linking nucleosome stability to gene silencing. Nucleosome instability at TAS is independent of telomeric repeats and can be transmitted to an intrachromosomal locus containing an ectopic TAS fragment, indicating that this is an intrinsic property of the underlying DNA sequence. When telomerase recruitment is compromised in cells lacking Ccq1, DNA sequences present in the TAS promote recombination between chromosomal ends, independent of nucleosome abundance, implying an active function of these sequences in telomere maintenance. We propose that Ccq1 and fragile subtelomeres co-evolved to regulate telomere plasticity by controlling nucleosome occupancy and genome stability.


Asunto(s)
Inestabilidad Genómica/genética , Nucleosomas/genética , Proteínas de Schizosaccharomyces pombe/genética , Telómero/genética , Genoma Fúngico/genética , Heterocromatina/genética , Humanos , Metilación , Schizosaccharomyces/genética
7.
Mol Cell ; 45(5): 585-6, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22405272

RESUMEN

In this issue of Molecular Cell, De Piccoli et al. (2012) show that, contrary to current models of DNA replication checkpoint function, replication proteins remain associated with each other and with replicating DNA when replication is stressed in checkpoint-deficient cells.

8.
Mol Cell ; 39(2): 162-4, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20670884

RESUMEN

In this issue of Molecular Cell, Ohouo et al. (2010) show that Mec1 (hATR) promotes the association of Slx4 and Rtt107 with Dpb11 (hTopBP1) in response to MMS-induced DNA alkylation, suggesting that Slx4 and Rtt107 might coordinate repair factors specifically at damaged replication forks.

9.
PLoS Genet ; 11(4): e1005162, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25894965

RESUMEN

In Saccharomyces cerevisiae, Ndd1 is the dedicated transcriptional activator of the mitotic gene cluster, which includes thirty-three genes that encode key mitotic regulators, making Ndd1 a hub for the control of mitosis. Previous work has shown that multiple kinases, including cyclin-dependent kinase (Cdk1), phosphorylate Ndd1 to regulate its activity during the cell cycle. Previously, we showed that Ndd1 was inhibited by phosphorylation in response to DNA damage. Here, we show that Ndd1 is also subject to regulation by protein turnover during the mitotic cell cycle: Ndd1 is unstable during an unperturbed cell cycle, but is strongly stabilized in response to DNA damage. We find that Ndd1 turnover in metaphase requires Cdk1 activity and the ubiquitin ligase SCF(Grr1). In response to DNA damage, Ndd1 stabilization requires the checkpoint kinases Mec1/Tel1 and Swe1, the S. cerevisiae homolog of the Wee1 kinase. In both humans and yeast, the checkpoint promotes Wee1-dependent inhibitory phosphorylation of Cdk1 following exposure to DNA damage. While this is critical for checkpoint-induced arrest in most organisms, this is not true in budding yeast, where the function of damage-induced inhibitory phosphorylation is less well understood. We propose that the DNA damage checkpoint stabilizes Ndd1 by inhibiting Cdk1, which we show is required for targeting Ndd1 for destruction.


Asunto(s)
Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Mitosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Proteína Quinasa CDC2/biosíntesis , Ciclo Celular/genética , Proteínas de Ciclo Celular/biosíntesis , Daño del ADN/genética , Proteínas F-Box/biosíntesis , Regulación Fúngica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/biosíntesis , Factores de Transcripción/biosíntesis , Ubiquitina-Proteína Ligasas/biosíntesis
10.
PLoS Genet ; 11(6): e1005292, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26091241

RESUMEN

The Skp1-Cul1-F box complex (SCF) associates with any one of a number of F box proteins, which serve as substrate binding adaptors. The human F box protein ßTRCP directs the conjugation of ubiquitin to a variety of substrate proteins, leading to the destruction of the substrate by the proteasome. To identify ßTRCP substrates, we employed a recently-developed technique, called Ligase Trapping, wherein a ubiquitin ligase is fused to a ubiquitin-binding domain to "trap" ubiquitinated substrates. 88% of the candidate substrates that we examined were bona fide substrates, comprising twelve previously validated substrates, eleven new substrates and three false positives. One ßTRCP substrate, CReP, is a Protein Phosphatase 1 (PP1) specificity subunit that targets the translation initiation factor eIF2α to promote the removal of a stress-induced inhibitory phosphorylation and increase cap-dependent translation. We found that CReP is targeted by ßTRCP for degradation upon DNA damage. Using a stable CReP allele, we show that depletion of CReP is required for the full induction of eIF2α phosphorylation upon DNA damage, and contributes to keeping the levels of translation low as cells recover from DNA damage.


Asunto(s)
Daño del ADN , Proteína Fosfatasa 1/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Unión Proteica , Biosíntesis de Proteínas , Estabilidad Proteica
11.
Mol Cell ; 33(5): 581-90, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19285942

RESUMEN

Cik1, in association with the kinesin Kar3, controls both the mitotic spindle and nuclear fusion during mating. Here, we show that there are two Cik1 isoforms, and that the mitotic form includes an N-terminal domain required for ubiquitination by the Anaphase-Promoting Complex/Cyclosome (APC/C). During vegetative growth, Cik1 is expressed during mitosis and regulates the mitotic spindle, allowing for accurate chromosome segregation. After mitosis, APC/C(Cdh1) targets Cik1 for ubiquitin-mediated proteolysis. Upon exposure to the mating pheromone alpha factor, a smaller APC/C-resistant Cik1 isoform is expressed from an alternate transcriptional start site. This shorter Cik1 isoform is stable and cannot be ubiquitinated by APC/C(Cdh1). Moreover, the two Cik1 isoforms are functionally distinct. Cells that express only the long isoform have defects in nuclear fusion, whereas cells expressing only the short isoform have an increased rate of chromosome loss. These results demonstrate a coupling of transcriptional regulation and APC/C-mediated proteolysis.


Asunto(s)
Proteínas de Microtúbulos/metabolismo , Mitosis , Péptido Hidrolasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdh1 , Segregación Cromosómica , Regulación Fúngica de la Expresión Génica , Factor de Apareamiento , Fusión de Membrana , Proteínas de Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/genética , Mutación , Péptido Hidrolasas/genética , Péptidos/metabolismo , Regiones Promotoras Genéticas , Isoformas de Proteínas , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Transcripción Genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación
12.
Mol Cell Proteomics ; 14(1): 162-76, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25381059

RESUMEN

Although histone acetylation and deacetylation machineries (HATs and HDACs) regulate important aspects of cell function by targeting histone tails, recent work highlights that non-histone protein acetylation is also pervasive in eukaryotes. Here, we use quantitative mass-spectrometry to define acetylations targeted by the sirtuin family, previously implicated in the regulation of non-histone protein acetylation. To identify HATs that promote acetylation of these sites, we also performed this analysis in gcn5 (SAGA) and esa1 (NuA4) mutants. We observed strong sequence specificity for the sirtuins and for each of these HATs. Although the Gcn5 and Esa1 consensus sequences are entirely distinct, the sirtuin consensus overlaps almost entirely with that of Gcn5, suggesting a strong coordination between these two regulatory enzymes. Furthermore, by examining global acetylation in an ada2 mutant, which dissociates Gcn5 from the SAGA complex, we found that a subset of Gcn5 targets did not depend on an intact SAGA complex for targeting. Our work provides a framework for understanding how HAT and HDAC enzymes collaborate to regulate critical cellular processes related to growth and division.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Acetilación , Histona Desacetilasas/metabolismo , Proteoma
14.
Proc Natl Acad Sci U S A ; 111(16): 5962-7, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24715726

RESUMEN

Hst3 is the histone deacetylase that removes histone H3K56 acetylation. H3K56 acetylation is a cell-cycle- and damage-regulated chromatin marker, and proper regulation of H3K56 acetylation is important for replication, genomic stability, chromatin assembly, and the response to and recovery from DNA damage. Understanding the regulation of enzymes that regulate H3K56 acetylation is of great interest, because the loss of H3K56 acetylation leads to genomic instability. HST3 is controlled at both the transcriptional and posttranscriptional level. Here, we show that Hst3 is targeted for turnover by the ubiquitin ligase SCF(Cdc4) after phosphorylation of a multisite degron. In addition, we find that Hst3 turnover increases in response to replication stress in a Rad53-dependent way. Turnover of Hst3 is promoted by Mck1 activity in both conditions. The Hst3 degron contains two canonical Cdc4 phospho-degrons, and the phosphorylation of each of these is required for efficient turnover both in an unperturbed cell cycle and in response to replication stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas F-Box/metabolismo , Histona Desacetilasas/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/metabolismo , Acetilación , Daño del ADN , Histona Desacetilasas/química , Histonas/metabolismo , Lisina/metabolismo , Fosforilación , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
15.
Nature ; 467(7314): 479-83, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20865002

RESUMEN

Origins of replication are activated throughout the S phase of the cell cycle such that some origins fire early and others fire late to ensure that each chromosome is completely replicated in a timely fashion. However, in response to DNA damage or replication fork stalling, eukaryotic cells block activation of unfired origins. Human cells derived from patients with ataxia telangiectasia are deficient in this process due to the lack of a functional ataxia telangiectasia mutated (ATM) kinase and elicit radioresistant DNA synthesis after γ-irradiation(2). This effect is conserved in budding yeast, as yeast cells lacking the related kinase Mec1 (ATM and Rad3-related (ATR in humans)) also fail to inhibit DNA synthesis in the presence of DNA damage. This intra-S-phase checkpoint actively regulates DNA synthesis by inhibiting the firing of late replicating origins, and this inhibition requires both Mec1 and the downstream checkpoint kinase Rad53 (Chk2 in humans). However, the Rad53 substrate(s) whose phosphorylation is required to mediate this function has remained unknown. Here we show that the replication initiation protein Sld3 is phosphorylated by Rad53, and that this phosphorylation, along with phosphorylation of the Cdc7 kinase regulatory subunit Dbf4, blocks late origin firing in Saccharomyces cerevisiae. Upon exposure to DNA-damaging agents, cells expressing non-phosphorylatable alleles of SLD3 and DBF4 (SLD3-m25 and dbf4-m25, respectively) proceed through the S phase faster than wild-type cells by inappropriately firing late origins of replication. SLD3-m25 dbf4-m25 cells grow poorly in the presence of the replication inhibitor hydroxyurea and accumulate multiple Rad52 foci. Moreover, SLD3-m25 dbf4-m25 cells are delayed in recovering from transient blocks to replication and subsequently arrest at the DNA damage checkpoint. These data indicate that the intra-S-phase checkpoint functions to block late origin firing in adverse conditions to prevent genomic instability and maximize cell survival.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Origen de Réplica/fisiología , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Hidroxiurea/farmacología , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Origen de Réplica/efectos de los fármacos , Fase S/efectos de los fármacos , Fase S/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
17.
Mol Cell ; 30(3): 267-76, 2008 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-18471973

RESUMEN

Previous work on the DNA damage checkpoint in Saccharomyces cerevisiae has shown that two complexes independently sense DNA lesions: the kinase Mec1-Ddc2 and the PCNA-like 9-1-1 complex. To test whether colocalization of these components is sufficient for checkpoint activation, we fused these checkpoint proteins to the LacI repressor and artificially colocalized these fusions by expressing them in cells harboring Lac operator arrays. We observed Rad53 and Rad9 phosphorylation, Sml1 degradation, and metaphase delay, demonstrating that colocalization of these sensors is sufficient to activate the checkpoint in the absence of DNA damage. Our tethering system allowed us to establish that CDK functions in the checkpoint pathway downstream of damage processing and checkpoint protein recruitment. This CDK dependence is likely, at least in part, through Rad9, since mutation of CDK consensus sites compromised its checkpoint function.


Asunto(s)
Daño del ADN , Genes cdc , Sustancias Macromoleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Cromatina/genética , Cromatina/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Activación Enzimática , Histonas/genética , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
Biochemistry ; 54(29): 4423-6, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26161950

RESUMEN

The SCF ubiquitin ligase associates with substrates through its F-box protein adaptor. Substrates are typically recognized through a defined phosphodegron. Here, we characterize the interaction of the F-box protein Saf1 with Prb1, one of its vacuolar protease substrates. We show that Saf1 binds the mature protein but ubiquitinates only the zymogen precursor. The ubiquitinated lysine was found to be in a peptide eliminated from the mature protein. Mutations that eliminate the catalytic activity of Prb1, or the related substrate Prc1, block Saf1 targeting of the zymogen precursor. Our data suggest that Saf1 does not require a conventional degron as do other F-box proteins but instead recognizes the catalytic site itself.


Asunto(s)
Endopeptidasas/química , Proteínas F-Box/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Endopeptidasas/fisiología , Unión Proteica , Proteolisis , Proteínas de Saccharomyces cerevisiae/fisiología
19.
PLoS Genet ; 8(7): e1002851, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844257

RESUMEN

Levels of G1 cyclins fluctuate in response to environmental cues and couple mitotic signaling to cell cycle entry. The G1 cyclin Cln3 is a key regulator of cell size and cell cycle entry in budding yeast. Cln3 degradation is essential for proper cell cycle control; however, the mechanisms that control Cln3 degradation are largely unknown. Here we show that two SCF ubiquitin ligases, SCF(Cdc4) and SCF(Grr1), redundantly target Cln3 for degradation. While the F-box proteins (FBPs) Cdc4 and Grr1 were previously thought to target non-overlapping sets of substrates, we find that Cdc4 and Grr1 each bind to all 3 G1 cyclins in cell extracts, yet only Cln3 is redundantly targeted in vivo, due in part to its nuclear localization. The related cyclin Cln2 is cytoplasmic and exclusively targeted by Grr1. However, Cdc4 can interact with Cdk-phosphorylated Cln2 and target it for degradation when cytoplasmic Cdc4 localization is forced in vivo. These findings suggest that Cdc4 and Grr1 may share additional redundant targets and, consistent with this possibility, grr1Δ cdc4-1 cells demonstrate a CLN3-independent synergistic growth defect. Our findings demonstrate that structurally distinct FBPs are capable of interacting with some of the same substrates; however, in vivo specificity is achieved in part by subcellular localization. Additionally, the FBPs Cdc4 and Grr1 are partially redundant for proliferation and viability, likely sharing additional redundant substrates whose degradation is important for cell cycle progression.


Asunto(s)
Proteínas de Ciclo Celular , Ciclinas , Proteínas F-Box , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , Ciclinas/genética , Ciclinas/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación , Fosforilación , Unión Proteica , Proteolisis , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
20.
Nat Cell Biol ; 9(10): 1184-91, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17828247

RESUMEN

Entry into the cell cycle is regulated by nutrient availability such that cells do not divide when resources are limited. The Skp1-Cul1-F-box (SCF) ubiquitin ligase with the F-box protein Grr1 (SCF(Grr1)) controls the proteolytic turnover of regulators of cell-cycle entry and a glucose sensor, suggesting that it links the cell cycle with nutrient availability. Here, we show that SCF(Grr1) broadly regulates cellular metabolism. We have developed a proteomic screening method that uses high-throughput quantitative microscopy to comprehensively screen for ubiquitin-ligase substrates. Seven new metabolic targets of SCF(Grr1) were identified, including two regulators of glycolysis--the transcription factor Tye7 and Pfk27. The latter produces the second messenger fructose-2,6-bisphosphate that activates glycolysis and inhibits gluconeogenesis. We show that SCF(Grr1) targets Pfk27 and Tye7 in response to glucose removal. Moreover, Pfk27 is phosphorylated by the kinase Snf1, and unphosphorylatable Pfk27 is stable and inhibits growth in the absence of glucose. These results demonstrate a role for SCF(Grr1) in regulating the glycolytic-gluconeogenic switch.


Asunto(s)
Gluconeogénesis/fisiología , Glucólisis/fisiología , Proteómica/métodos , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Western Blotting , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box , Gluconeogénesis/genética , Glucólisis/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA