Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38251107

RESUMEN

The optical properties of light-absorbing materials in optical shutter devices are critical to the use of such platforms for optical applications. We demonstrate switchable optical properties of dyes and nanoparticles in liquid-based electrowetting-on-dielectric (EWOD) devices. Our work uses narrow-band-absorbing dyes and nanoparticles, which are appealing for spectral-filtering applications targeting specific wavelengths while maintaining device transparency at other wavelengths. Low-voltage actuation of boron dipyromethene (BODIPY) dyes and nanoparticles (Ag and CdSe) was demonstrated without degradation of the light-absorbing materials. Three BODIPY dyes were used, namely Abs 503 nm, 535 nm and 560 nm for dye 1 (BODIPY-core), 2 (I2BODIPY) and 3 (BODIPY-TMS), respectively. Reversible and low-voltage (≤20 V) switching of dye optical properties was observed as a function of device pixel dimensions (300 × 900, 200 × 600 and 150 × 450 µm). Low-voltage and reversible switching was also demonstrated for plasmonic and semiconductor nanoparticles, such as CdSe nanotetrapods (abs 508 nm), CdSe nanoplatelets (Abs 461 and 432 nm) and Ag nanoparticles (Abs 430 nm). Nanoparticle-based devices showed minimal hysteresis as well as faster relaxation times. The study presented can thus be extended to a variety of nanomaterials and dyes having the desired optical properties.

2.
J Colloid Interface Sci ; 639: 401-407, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36812855

RESUMEN

HYPOTHESIS: Nanoparticles of various shapes and sizes can affect the optical properties and blue phase (BP) stabilization of BP liquid crystals (BPLCs). This is because nanoparticles, which are more compatible with the LC host, can be dispersed in both the double twist cylinder (DTC) and disclination defects in BPLCs. EXPERIMENTS: This study presents the first systematic study of the use of CdSe nanoparticles having various sizes and shapes (spheres, tetrapods and nanoplatelets) to stabilize BPLCs. Unlike previous studies using commercial nanoparticles (NPs), we custom-synthesized NPs with the same core and nearly identical long chain hydrocarbon ligand materials. Two LC hosts were used to investigate the NP effect on BPLCs. FINDINGS: The size and shape of nanomaterials greatly influence the interaction with LCs, and the dispersion of NPs in the LC medium affects the position of the BP reflection band and the stabilization of BPs. Spherical NPs were found to be more compatible with the LC medium than tetrapod shape and platelet shape NPs, resulting in a wider temperature range of BP and a redshift of the reflection band of BP. In addition, the inclusion of spherical NPs tuned the optical properties of BPLCs to a significant extent, whereas BPLCs with nanoplatelets displayed a limited influence on the optical properties and temperature window of BPs due to poor compatibility with LC hosts. The tunable optical behavior of BPLC as a function of the type and concentration of NPs has not been reported.

3.
Materials (Basel) ; 16(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36984126

RESUMEN

Cholesteric liquid crystals (CLC) are molecules that can self-assemble into helicoidal superstructures exhibiting circularly polarized reflection. The facile self-assembly and resulting optical properties makes CLCs a promising technology for an array of industrial applications, including reflective displays, tunable mirror-less lasers, optical storage, tunable color filters, and smart windows. The helicoidal structure of CLC can be stabilized via in situ photopolymerization of liquid crystal monomers in a CLC mixture, resulting in polymer-stabilized CLCs (PSCLCs). PSCLCs exhibit a dynamic optical response that can be induced by external stimuli, including electric fields, heat, and light. In this review, we discuss the electro-optic response and potential mechanism of PSCLCs reported over the past decade. Multiple electro-optic responses in PSCLCs with negative or positive dielectric anisotropy have been identified, including bandwidth broadening, red and blue tuning, and switching the reflection notch when an electric field is applied. The reconfigurable optical response of PSCLCs with positive dielectric anisotropy is also discussed. That is, red tuning (or broadening) by applying a DC field and switching by applying an AC field were both observed for the first time in a PSCLC sample. Finally, we discuss the potential mechanism for the dynamic response in PSCLCs.

4.
J Colloid Interface Sci ; 584: 395-402, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33080501

RESUMEN

HYPOTHESIS: The electrowetting behavior of droplets can be altered by the inclusion of salts, surfactants, or nanoparticles. We propose that varying the properties of cadmium selenide/zinc sulfide quantum dots will affect the electrowetting behavior of fluorescent nanofluids. Information gathered will allow for greater control of fluid properties when designing a colloidal system in an electrowetting environment. EXPERIMENTS: Aqueous-based quantum dots were functionalized with mercaptocarboxylic acid ligands of various chain length and binding motifs by a room temperature phase transfer method. The size and concentration of the quantum dot were varied, and droplets of the resulting nanofluids were exposed to increasing amounts of voltage. The change in contact angle was evaluated and correlated to the surface chemistry, size, and concentration of the quantum dots. FINDINGS: Quantum dot nanofluids with longer alkyl chains have the most pronounced change in contact angle and were the most stable under applied voltage. The size of the nanoparticles does not significantly impact the electrowetting behavior at low concentration (3 µM), but nanofluids containing smaller diameter quantum dots show enhanced electrowetting behavior at higher concentration (27 µM). The fluorescent properties of the QD nanofluids studied were not affected after repeated electrowetting cycles.

5.
ACS Appl Mater Interfaces ; 11(31): 28487-28498, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31290307

RESUMEN

Digital microfluidics is a liquid-handling technology capable of rapidly and autonomously controlling multiple discrete droplets across an array of electrodes and has seen continual growth in the fields of chemistry, biology, and optics. This technology is enabled by rapidly switching the wettability of a surface through the application of an electric field: a phenomenon known as electrowetting-on-dielectric. The results reported here elucidate the wetting behavior of fluorescent quantum dot nanofluids by varying the aqueous-solubilizing polymers, changing the size of the nanocrystals, and the addition of surfactants. Nanofluid droplets were demonstrated to have very large changes in contact angle (>100°) by employing alternating current voltage to aqueous droplets within a dodecane medium. The stability of quantum dot nanofluids is also evaluated within a digital microfluidics platform, and the optical properties are not perturbed even under high voltages (250 V). Multiple fluorescent droplets with varying emission can be simultaneously actuated and rapidly mixed (<10 s) to generate a new nanofluid with optical properties different from the parent solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA