Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 166(1): 140-51, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27264606

RESUMEN

Caloric restriction (CR) extends the lifespan of flies, worms, and yeast by counteracting age-related oxidation of H2O2-scavenging peroxiredoxins (Prxs). Here, we show that increased dosage of the major cytosolic Prx in yeast, Tsa1, extends lifespan in an Hsp70 chaperone-dependent and CR-independent manner without increasing H2O2 scavenging or genome stability. We found that Tsa1 and Hsp70 physically interact and that hyperoxidation of Tsa1 by H2O2 is required for the recruitment of the Hsp70 chaperones and the Hsp104 disaggregase to misfolded and aggregated proteins during aging, but not heat stress. Tsa1 counteracted the accumulation of ubiquitinated aggregates during aging and the reduction of hyperoxidized Tsa1 by sulfiredoxin facilitated clearance of H2O2-generated aggregates. The data reveal a conceptually new role for H2O2 signaling in proteostasis and lifespan control and shed new light on the selective benefits endowed to eukaryotic peroxiredoxins by their reversible hyperoxidation.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Peróxido de Hidrógeno/metabolismo , Longevidad , Peroxidasas/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Restricción Calórica , Inestabilidad Genómica , Proteínas de Choque Térmico/metabolismo , Humanos , Oxidación-Reducción , Agregado de Proteínas , Saccharomyces cerevisiae/citología , Transducción de Señal
2.
Cell ; 140(4): 454-6, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20178737

RESUMEN

Mammalian cells use hydrogen peroxide (H(2)O(2)) not only to kill invading pathogens, but also as a signaling modulator. Woo et al. (2010) now show that the local inactivation of a H(2)O(2)-degrading enzyme ensures that the production of this oxidant is restricted to the signaling site.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Transducción de Señal , Animales , Humanos , Ratones , Peroxirredoxinas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
3.
Mol Cell ; 67(6): 962-973.e5, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28918898

RESUMEN

In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative GSH and GSSG biosensors to monitor glutathione import into the ER of yeast cells. We found that glutathione enters the ER by facilitated diffusion through the Sec61 protein-conducting channel, while oxidized Bip (Kar2) inhibits transport. Increased ER glutathione import triggers H2O2-dependent Bip oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import and Ero1 activation. The ER protein-conducting channel is permeable to small molecules, provided the driving force of a concentration gradient.


Asunto(s)
Retículo Endoplásmico/enzimología , Proteínas Fúngicas/metabolismo , Glutatión/metabolismo , Glicoproteínas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Canales de Translocación SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citosol/enzimología , Difusión Facilitada , Proteínas Fúngicas/genética , Disulfuro de Glutatión/metabolismo , Glicoproteínas/genética , Proteínas HSP70 de Choque Térmico/genética , Peróxido de Hidrógeno/metabolismo , Membranas Intracelulares/enzimología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Canales de Translocación SEC/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo , Respuesta de Proteína Desplegada
4.
Mol Cell ; 59(4): 517-9, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26295958

RESUMEN

In this issue of Molecular Cell, Kil et al. (2015) provide evidence for self-sustained circadian oscillations of the hyperoxidation of the mitochondrial Peroxiredoxin, PrxIII, and cytosolic release of mitochondrial H2O2, which might constitute one biochemical output coupling metabolic changes and transcriptional-based core clocks.


Asunto(s)
Ritmo Circadiano , Mitocondrias/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Animales , Humanos
5.
J Am Chem Soc ; 144(38): 17496-17515, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36121382

RESUMEN

Iron-sulfur (Fe-S) clusters are prosthetic groups of proteins biosynthesized on scaffold proteins by highly conserved multi-protein machineries. Biosynthesis of Fe-S clusters into the ISCU scaffold protein is initiated by ferrous iron insertion, followed by sulfur acquisition, via a still elusive mechanism. Notably, whether iron initially binds to the ISCU cysteine-rich assembly site or to a cysteine-less auxiliary site via N/O ligands remains unclear. We show here by SEC, circular dichroism (CD), and Mössbauer spectroscopies that iron binds to the assembly site of the monomeric form of prokaryotic and eukaryotic ISCU proteins via either one or two cysteines, referred to the 1-Cys and 2-Cys forms, respectively. The latter predominated at pH 8.0 and correlated with the Fe-S cluster assembly activity, whereas the former increased at a more acidic pH, together with free iron, suggesting that it constitutes an intermediate of the iron insertion process. Iron not binding to the assembly site was non-specifically bound to the aggregated ISCU, ruling out the existence of a structurally defined auxiliary site in ISCU. Characterization of the 2-Cys form by site-directed mutagenesis, CD, NMR, X-ray absorption, Mössbauer, and electron paramagnetic resonance spectroscopies showed that the iron center is coordinated by four strictly conserved amino acids of the assembly site, Cys35, Asp37, Cys61, and His103, in a tetrahedral geometry. The sulfur receptor Cys104 was at a very close distance and apparently bound to the iron center when His103 was missing, which may enable iron-dependent sulfur acquisition. Altogether, these data provide the structural basis to elucidate the Fe-S cluster assembly process and establish that the initiation of Fe-S cluster biosynthesis by insertion of a ferrous iron in the assembly site of ISCU is a conserved mechanism.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Hierro-Azufre , Cisteína/química , Proteínas de Escherichia coli/química , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Compuestos de Sulfonilurea , Azufre/metabolismo
6.
Environ Microbiol ; 22(6): 1997-2000, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32342578

RESUMEN

The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.


Asunto(s)
Betacoronavirus , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , COVID-19 , Infecciones por Coronavirus , Brotes de Enfermedades , Humanos , Pandemias , Neumonía Viral , SARS-CoV-2
7.
Nat Chem Biol ; 13(8): 909-915, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28628095

RESUMEN

In Saccharomyces cerevisiae, Yap1 regulates an H2O2-inducible transcriptional response that controls cellular H2O2 homeostasis. H2O2 activates Yap1 by oxidation through the intermediary of the thiol peroxidase Orp1. Upon reacting with H2O2, Orp1 catalytic cysteine oxidizes to a sulfenic acid, which then engages into either an intermolecular disulfide with Yap1, leading to Yap1 activation, or an intramolecular disulfide that commits the enzyme into its peroxidatic cycle. How the first of these two competing reactions, which is kinetically unfavorable, occurs was previously unknown. We show that the Yap1-binding protein Ybp1 brings together Orp1 and Yap1 into a ternary complex that selectively activates condensation of the Orp1 sulfenylated cysteine with one of the six Yap1 cysteines while inhibiting Orp1 intramolecular disulfide formation. We propose that Ybp1 operates as a scaffold protein and as a sulfenic acid chaperone to provide specificity in the transfer of oxidizing equivalents by a reactive sulfenic acid species.


Asunto(s)
Cisteína/metabolismo , Peróxido de Hidrógeno/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Ácidos Sulfénicos/metabolismo , Factores de Transcripción/metabolismo
8.
Nat Rev Mol Cell Biol ; 8(10): 813-24, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17848967

RESUMEN

Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.


Asunto(s)
Homeostasis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Oxidación-Reducción
9.
Mol Cell ; 43(5): 823-33, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21884982

RESUMEN

Caloric restriction (CR) extends the life span of organisms ranging from yeast to primates. Here, we show that the thiol-dependent peroxiredoxin Tsa1 and its partner sulfiredoxin, Srx1, are required for CR to extend the replicative life span of yeast cells. Tsa1 becomes hyperoxidized/inactive during aging, and CR mitigates such oxidation by elevating the levels of Srx1, which is required to reduce/reactivate hyperoxidized Tsa1. CR, by lowering cAMP-PKA activity, enhances Gcn2-dependent SRX1 translation, resulting in increased resistance to H(2)O(2) and life span extension. Moreover, an extra copy of the SRX1 gene is sufficient to extend the life span of cells grown in high glucose concentrations by 20% in a Tsa1-dependent and Sir2-independent manner. The data demonstrate that Tsa1 is required to ensure yeast longevity and that CR extends yeast life span, in part, by counteracting age-induced hyperoxidation of this peroxiredoxin.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Peroxidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Restricción Calórica , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Peroxidasas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
Proc Natl Acad Sci U S A ; 112(34): 10685-90, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261310

RESUMEN

Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.


Asunto(s)
Adaptación Fisiológica/genética , Aneuploidia , Deleción Cromosómica , Cromosomas Fúngicos/genética , Transporte de Electrón/fisiología , Proteínas Mitocondriales/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Antimicina A/farmacología , Citocromo-c Peroxidasa/genética , Citocromo-c Peroxidasa/fisiología , Eliminación de Gen , Dosificación de Gen , Genes Fúngicos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiología , Peróxido de Hidrógeno/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/genética , Oligomicinas/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/fisiología , Peroxidasas/deficiencia , Peroxidasas/genética , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
12.
EMBO J ; 30(10): 2044-56, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21478822

RESUMEN

Glutathione contributes to thiol-redox control and to extra-mitochondrial iron-sulphur cluster (ISC) maturation. To determine the physiological importance of these functions and sort out those that account for the GSH requirement for viability, we performed a comprehensive analysis of yeast cells depleted of or containing toxic levels of GSH. Both conditions triggered an intense iron starvation-like response and impaired the activity of extra-mitochondrial ISC enzymes but did not impact thiol-redox maintenance, except for high glutathione levels that altered oxidative protein folding in the endoplasmic reticulum. While iron partially rescued the ISC maturation and growth defects of GSH-depleted cells, genetic experiments indicated that unlike thioredoxin, glutathione could not support by itself the thiol-redox duties of the cell. We propose that glutathione is essential by its requirement in ISC assembly, but only serves as a thioredoxin backup in cytosolic thiol-redox maintenance. Glutathione-high physiological levels are thus meant to insulate its cytosolic function in iron metabolism from variations of its concentration during redox stresses, a model challenging the traditional view of it as prime actor in thiol-redox control.


Asunto(s)
Glutatión/metabolismo , Hierro/metabolismo , Saccharomyces cerevisiae/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Pliegue de Proteína , Procesamiento Proteico-Postraduccional
13.
Nat Chem Biol ; 14(11): 991-993, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30327557
14.
Carcinogenesis ; 35(5): 1177-84, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24503444

RESUMEN

Sulfiredoxin (Srx), the exclusive enzyme that reduces the hyperoxidized inactive form of peroxiredoxins (Prxs), has been found highly expressed in several types of human skin cancer. To determine whether Srx contributed to skin tumorigenesis in vivo, Srx null mice were generated on an FVB background. Mouse skin tumorigenesis was induced by a 7,12-dimethylbenz[α]anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) protocol. We found that the number, volume and size of papillomas in Srx(-/-) mice were significantly fewer compared with either wild-type (Wt) or heterozygous (Het) siblings. Histopathological analysis revealed more apoptotic cells in tumors from Srx(-/-) mice. Mechanistic studies in cell culture revealed that Srx was stimulated by TPA in a redox-independent manner. This effect was mediated transcriptionally through the activation of mitogen-activated protein kinase and Jun-N-terminal kinase. We also demonstrated that Srx was capable of reducing hyperoxidized Prxs to facilitate cell survival under oxidative stress conditions. These findings suggested that loss of Srx protected mice, at least partially, from DMBA/TPA-induced skin tumorigenesis. Therefore, Srx has an oncogenic role in skin tumorigenesis and targeting Srx may provide novel strategies for skin cancer prevention or treatment.


Asunto(s)
Transformación Celular Neoplásica/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Neoplasias Cutáneas/genética , Piel/metabolismo , Piel/patología , 9,10-Dimetil-1,2-benzantraceno/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular , Proliferación Celular , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Piel/efectos de los fármacos , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Acetato de Tetradecanoilforbol/efectos adversos , Activación Transcripcional/efectos de los fármacos
15.
J Biol Chem ; 288(43): 31177-91, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24019521

RESUMEN

In the endoplasmic reticulum (ER), misfolded or improperly assembled proteins are exported to the cytoplasm and degraded by the ubiquitin-proteasome pathway through a process called ER-associated degradation (ERAD). ER-associated E3 ligases, which coordinate substrate recognition, export, and proteasome targeting, are key components of ERAD. Cystic fibrosis transmembrane conductance regulator (CFTR) is one ERAD substrate targeted to co-translational degradation by the E3 ligase RNF5/RMA1. RNF185 is a RING domain-containing polypeptide homologous to RNF5. We show that RNF185 controls the stability of CFTR and of the CFTRΔF508 mutant in a RING- and proteasome-dependent manner but does not control that of other classical ERAD model substrates. Reciprocally, its silencing stabilizes CFTR proteins. Turnover analyses indicate that, as RNF5, RNF185 targets CFTR to co-translational degradation. Importantly, however, simultaneous depletion of RNF5 and RNF185 profoundly blocks CFTRΔF508 degradation not only during translation but also after synthesis is complete. Our data thus identify RNF185 and RNF5 as a novel E3 ligase module that is central to the control of CFTR degradation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteínas de Unión al ADN/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Caenorhabditis elegans , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Ratones , Proteínas Mitocondriales/genética , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Biosíntesis de Proteínas/fisiología , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/genética
16.
Biochim Biophys Acta ; 1833(5): 997-1005, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23295455

RESUMEN

Arsenic is a double-edge sword. On the one hand it is powerful carcinogen and on the other it is used therapeutically to treat acute promyelocytic leukemia. Here we report that arsenic activates the iron responsive transcription factor, Aft1, as a consequence of a defective high-affinity iron uptake mediated by Fet3 and Ftr1, whose mRNAs are drastically decreased upon arsenic exposure. Moreover, arsenic causes the internalization and degradation of Fet3. Most importantly, fet3ftr1 mutant exhibits increased arsenic resistance and decreased arsenic accumulation over the wild-type suggesting that Fet3 plays a role in arsenic toxicity. Finally we provide data suggesting that arsenic also disrupts iron uptake in mammals and the link between Fet3, arsenic and iron, can be relevant to clinical applications.


Asunto(s)
Arseniatos , Hierro/metabolismo , Saccharomyces cerevisiae , Animales , Arseniatos/efectos adversos , Arseniatos/metabolismo , Arseniatos/uso terapéutico , Ceruloplasmina/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Mamíferos , Proteínas de Transporte de Membrana/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
17.
Carcinogenesis ; 34(6): 1403-10, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23393226

RESUMEN

Sulfiredoxin (Srx) is the enzyme that reduces the hyperoxidized inactive form of peroxiredoxins. To study the function of Srx in carcinogenesis in vivo, we tested whether loss of Srx protects mice from cancer development. Srx null mice were generated and colon carcinogenesis was induced by an azoxymethane (AOM) and dextran sulfate sodium (DSS) protocol. Compared with either wild-type (Wt) or heterozygotes, Srx(-/-) mice had significantly reduced rates in both tumor multiplicity and volume. Mechanistic studies reveal that loss of Srx did not alter tumor cell proliferation; however, increased apoptosis and decreased inflammatory cell infiltration were obvious in tumors from Srx null mice compared with those from Wt control. In addition to the AOM/DSS model, examination of Srx expression in human reveals a tissue-specific expression pattern. Srx expression was also demonstrated in tumors from colorectal cancer patients and the levels of expression were associated with patients' clinic stages. These data provide the first in vivo evidence that loss of Srx renders mice resistant to AOM/DSS-induced colon carcinogenesis, suggesting that Srx has a critical oncogenic role in cancer development, and Srx may be used as a marker for human colon cancer pathogenicity.


Asunto(s)
Transformación Celular Neoplásica , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Animales , Apoptosis , Azoximetano , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/inducido químicamente , Sulfato de Dextran , Genotipo , Humanos , Neoplasias Pulmonares , Macrófagos/inmunología , Ratones , Ratones Noqueados , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Peroxirredoxinas/metabolismo
18.
Antioxid Redox Signal ; 39(10-12): 708-727, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37450339

RESUMEN

Significance: Redox signaling through mitochondrial reactive oxygen species (mtROS) has a key role in several mechanisms of regulated cell death (RCD), necroptosis, ferroptosis, pyroptosis, and apoptosis, thereby decisively contributing to inflammatory disorders. The role of mtROS in apoptosis has been extensively addressed, but their involvement in necrotic-like RCD has just started being elucidated, providing novel insights into the pathophysiology of acute inflammation. Recent Advances: p53 together with mtROS drive necroptosis in acute inflammation through downregulation of sulfiredoxin and peroxiredoxin 3. Mitochondrial hydroorotate dehydrogenase is a key redox system in the regulation of ferroptosis. In addition, a noncanonical pathway, which generates mtROS through the Ragulator-Rag complex and acts via mTORC1 to promote gasdermin D oligomerization, triggers pyroptosis. Critical Issues: mtROS trigger positive feedback loops leading to lytic RCD in conjunction with the necrosome, the inflammasome, glutathione depletion, and glutathione peroxidase 4 deficiency. Future Directions: The precise mechanism of membrane rupture in ferroptosis and the contribution of mtROS to ferroptosis in inflammatory disorders are still unclear, which will need further research. Mitochondrial antioxidants may provide promising therapeutic approaches toward acute inflammatory disorders. However, establishing doses and windows of action will be required to optimize their therapeutic potential, and to avoid potential adverse side effects linked to the blockade of beneficial mtROS adaptive signaling. Antioxid. Redox Signal. 39, 708-727.


Asunto(s)
Antioxidantes , Apoptosis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Piroptosis , Inflamación/metabolismo
19.
Antioxidants (Basel) ; 12(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36829926

RESUMEN

Non-small cell lung cancer (NSCLC), the most common type of lung cancer, etiologically associates with tobacco smoking which mechanistically contributes to oxidative stress to facilitate the occurrence of mutations, oncogenic transformation and aberrantly activated signaling pathways. Our previous reports suggested an essential role of Sulfiredoxin (Srx) in promoting the development of lung cancer in humans, and was causally related to Peroxiredoxin IV (Prx4), the major downstream substrate and mediator of Srx-enhanced signaling. To further explore the role of the Srx-Prx4 axis in de novo lung tumorigenesis, we established Prx4-/- and Srx-/-/Prx4-/- mice in pure FVB/N background. Together with wild-type litter mates, these mice were exposed to carcinogenic urethane and the development of lung tumorigenesis was evaluated. We found that disruption of the Srx-Prx4 axis, either through knockout of Srx/Prx4 alone or together, led to a reduced number and size of lung tumors in mice. Immunohistological studies found that loss of Srx/Prx4 led to reduced rate of cell proliferation and less intratumoral macrophage infiltration. Mechanistically, we found that exposure to urethane increased the levels of reactive oxygen species, activated the expression of and Prx4 in normal lung epithelial cells, while knockout of Prx4 inhibited urethane-induced cell transformation. Moreover, bioinformatics analysis found that the Srx-Prx4 axis is activated in many human cancers, and their increased expression is tightly correlated with poor prognosis in NSCLC patients.

20.
Redox Biol ; 56: 102423, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029648

RESUMEN

Mitochondrial dysfunction is a key contributor to necroptosis. We have investigated the contribution of p53, sulfiredoxin, and mitochondrial peroxiredoxin 3 to necroptosis in acute pancreatitis. Late during the course of pancreatitis, p53 was localized in mitochondria of pancreatic cells undergoing necroptosis. In mice lacking p53, necroptosis was absent, and levels of PGC-1α, peroxiredoxin 3 and sulfiredoxin were upregulated. During the early stage of pancreatitis, prior to necroptosis, sulfiredoxin was upregulated and localized into mitochondria. In mice lacking sulfiredoxin with pancreatitis, peroxiredoxin 3 was hyperoxidized, p53 localized in mitochondria, and necroptosis occurred faster; which was prevented by Mito-TEMPO. In obese mice, necroptosis occurred in pancreas and adipose tissue. The lack of p53 up-regulated sulfiredoxin and abrogated necroptosis in pancreas and adipose tissue from obese mice. We describe here a positive feedback between mitochondrial H2O2 and p53 that downregulates sulfiredoxin and peroxiredoxin 3 leading to necroptosis in inflammation and obesity.


Asunto(s)
Pancreatitis , Peroxiredoxina III , Enfermedad Aguda , Animales , Regulación hacia Abajo , Peróxido de Hidrógeno/metabolismo , Ratones , Ratones Obesos , Necroptosis , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA