Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Comput Chem ; 44(3): 334-345, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35668552

RESUMEN

In the current study, the coordination chemistry of nine-coordinate Ac(III) complexes with 35 monodentate and bidentate ligands was investigated using density functional theory (DFT) in terms of their geometries, charges, reaction energies, and bonding interactions. The energy decomposition analysis with naturals orbitals for chemical valence (EDA-NOCV) and the quantum theory of atoms in molecules (QTAIM) were employed as analysis methods. Trivalent Ac exhibits the highest affinities toward hard acids (such as charged oxophilic donors, fluoride), so its classification as a hard acid is justified. Natural population analysis quantified the involvement of 5f orbitals on Ac to be about 30% of total valence electron natural configuration indicating that Ac is a member of the actinide series. Pearson correlation coefficients were used to study the pairwise correlations among the bond lengths, ΔG reaction energies, charges on Ac and donor atoms, and data from EDA-NOCV and QTAIM. Strong correlations and anticorrelations were found between Voronoi charges on donor atoms with ΔG, EDA-NOCV interaction energies and QTAIM bond critical point densities.

2.
Chemphyschem ; 24(18): e202300366, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37366275

RESUMEN

The tri-thorium cluster [{Th(η8 -C8 H8 )(µ3 -Cl)2 }3 {K(THF)2 }2 ]∞ (Nature 2021, 598, 72-75) was reported to feature intriguing σ-aromatic bonding between the thorium atoms, a mode of metal-metal bonding unique in the actinide series. However, the presence of this bonding motif has since been challenged by others. Here, we computationally explore electron delocalisation in a molecular cluster fragment of [{Th(η8 -C8 H8 )(µ3 -Cl)2 }3 {K(THF)2 }2 ]∞ and examine its responses to an applied magnetic field using a variety of methods. We also discuss the importance of the choice of basis set for the Th atoms and issues regarding locating QTAIM bond critical points. When taken together, the computed data consistently suggest the presence of delocalised Th-Th bonding and Th3 σ-aromaticity.

3.
J Org Chem ; 86(6): 4483-4496, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33648337

RESUMEN

Multitopic supramolecular guests with finely tuned affinities toward widely explored cucurbit[n]urils (CBs) and cyclodextrins (CDs) have been recently designed and tested as functional components of advanced supramolecular systems. We employed various spacers between the adamantane cage and a cationic moiety as a tool for tuning the binding strength toward CB7 to prepare a set of model guests with KCB7 and Kß-CD values of (0.6-5.0) × 1010 M-1 and (0.6-2.6) × 106 M-1, respectively. These accessible adamantylphenyl-based binding motifs open a way toward supramolecular components with an outstanding affinity toward ß-cyclodextrin. 1H NMR experiments performed in 30% CaCl2/D2O at 273 K along with molecular dynamics simulations allowed us to identify two arrangements of the guest@ß-CD complexes. The approach, joining experimental and theoretical methods, provided a better understanding of the structure of cyclodextrin complexes and related molecular recognition, which is highly important for the rational design of drug delivery systems, molecular sensors and switches.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , Espectroscopía de Resonancia Magnética , Estructura Molecular , Agua
4.
J Chem Theory Comput ; 16(4): 2627-2634, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32134648

RESUMEN

Transition-metal complexes provide rich features in vibrational circular dichroism (VCD) spectra, including significant intensity enhancements, and become thus useful in structural and functional studies of molecules. Quite often, however, the vibrational spectral bands are mixed with the electronic ones, and interpretation of such experiments is difficult. In the present study, we elaborate on the theory needed to calculate the VCD intensities beyond the Born-Oppenheimer (BO) approximation. Within a perturbation approach, the coupling between the electronic and vibrational states is estimated using the harmonic approximation and simplified wave functions obtainable from common density functional theory (DFT) computations. Explicit expressions, including Slater determinants and derivatives of molecular orbitals, are given. On a model diamine complex, the implementation is tested and factors affecting spectral intensities and frequencies are investigated. For two larger molecules, the results are in a qualitative agreement with previous experimental data. Typically, the electronic-vibrational interaction Hamiltonian coupling elements are rather small (∼0 to 10 cm-1), which provides negligible contributions to vibrational frequencies and absorption intensities. However, significant changes in VCD spectra are induced due to the large transition magnetic dipole moment associated with the d-d metal transitions. The possibility to model the spectra beyond the BO limit opens the way to further applications of chiral spectroscopy and transition-metal complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA