RESUMEN
PURPOSE: To present and assess an outlier mitigation method that makes free-running volumetric cardiovascular MRI (CMR) more robust to motion. METHODS: The proposed method, called compressive recovery with outlier rejection (CORe), models outliers in the measured data as an additive auxiliary variable. We enforce MR physics-guided group sparsity on the auxiliary variable, and jointly estimate it along with the image using an iterative algorithm. For evaluation, CORe is first compared to traditional compressed sensing (CS), robust regression (RR), and an existing outlier rejection method using two simulation studies. Then, CORe is compared to CS using seven three-dimensional (3D) cine, 12 rest four-dimensional (4D) flow, and eight stress 4D flow imaging datasets. RESULTS: Our simulation studies show that CORe outperforms CS, RR, and the existing outlier rejection method in terms of normalized mean square error and structural similarity index across 55 different realizations. The expert reader evaluation of 3D cine images demonstrates that CORe is more effective in suppressing artifacts while maintaining or improving image sharpness. Finally, 4D flow images show that CORe yields more reliable and consistent flow measurements, especially in the presence of involuntary subject motion or exercise stress. CONCLUSION: An outlier rejection method is presented and tested using simulated and measured data. This method can help suppress motion artifacts in a wide range of free-running CMR applications.
Asunto(s)
Algoritmos , Imagenología Tridimensional , Imagen por Resonancia Cinemagnética , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Cinemagnética/métodos , Artefactos , Simulación por Computador , Movimiento (Física) , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Corazón/diagnóstico por imagenRESUMEN
BACKGROUND: Cardiovascular magnetic resonance (CMR) is increasingly utilized to evaluate expanding cardiovascular conditions. The Society for Cardiovascular Magnetic Resonance (SCMR) Registry is a central repository for real-world clinical data to support cardiovascular research, including those relating to outcomes, quality improvement, and machine learning. The SCMR Registry is built on a regulatory-compliant, cloud-based infrastructure that houses searchable content and Digital Imaging and Communications in Medicine images. The goal of this study is to summarize the status of the SCMR Registry at 150,000 exams. METHODS: The processes for data security, data submission, and research access are outlined. We interrogated the Registry and presented a summary of its contents. RESULTS: Data were compiled from 154,458 CMR scans across 20 United States sites, containing 299,622,066 total images (â¼100 terabytes of storage). Across reported values, the human subjects had an average age of 58 years (range 1 month to >90 years old), were 44% (63,070/145,275) female, 72% (69,766/98,008) Caucasian, and had a mortality rate of 8% (9,962/132,979). The most common indication was cardiomyopathy (35,369/131,581, 27%), and most frequently used current procedural terminology code was 75561 (57,195/162,901, 35%). Macrocyclic gadolinium-based contrast agents represented 89% (83,089/93,884) of contrast utilization after 2015. Short-axis cines were performed in 99% (76,859/77,871) of tagged scans, short-axis late gadolinium enhancement (LGE) in 66% (51,591/77,871), and stress perfusion sequences in 30% (23,241/77,871). Mortality data demonstrated increased mortality in patients with left ventricular ejection fraction <35%, the presence of wall motion abnormalities, stress perfusion defects, and infarct LGE, compared to those without these markers. There were 456,678 patient-years of all-cause mortality follow-up, with a median follow-up time of 3.6 years. CONCLUSION: The vision of the SCMR Registry is to promote evidence-based utilization of CMR through a collaborative effort by providing a web mechanism for centers to securely upload de-identified data and images for research, education, and quality control. The Registry quantifies changing practice over time and supports large-scale real-world multicenter observational studies of prognostic utility.
RESUMEN
BACKGROUND: Transesophageal echocardiography (TEE) and cardiac computed tomography angiography (CCTA) are currently utilized for left atrial appendage closure (LAAC) planning. During the recent global iodine contrast media shortage in 2022, cardiac magnetic resonance imaging (CMR) was utilized for the first time for LAAC planning. This study sought to assess the utility of CMR versus TEE for LAAC planning. METHODS: This single center retrospective study consisted of all patients who underwent preoperative CMR for LAAC with Watchman FLX or Amplatzer Amulet. Key measures were accuracy of LAA thrombus exclusion, ostial diameter, depth, lobe count, morphology, accuracy of predicted device size, and devices deployed per case. Bland-Altman Analysis was used to compare CMR versus TEE measurements of LAA ostial diameter and depth. RESULTS: 25 patients underwent preoperative CMR for LAAC planning. A total of 24 (96%) cases were successfully completed with 1.2 ± 0.5 devices deployed per case. Among the 18 patients who underwent intraoperative TEE, there was no significant difference between CMR versus TEE in LAA thrombus exclusion (CMR 83% vs. TEE 100% cases, p = .229), lobe count (CMR 1.7 ± 0.8 vs. TEE 1.4 ± 0.6, p = .177), morphology (p = .422), and accuracy of predicted device size (CMR 67% vs. TEE 72% cases, p = 1.000). When comparing the difference between CMR and TEE measurements, Bland-Altman analysis demonstrated no significant difference in LAA ostial diameter (CMR-TEE bias 0.7 mm, 95% CI [-1.1, 2.4], p = .420), but LAA depth was significantly larger with CMR versus TEE (CMR-TEE bias 7.4 mm, 95% CI [1.6, 13.2], p = .015). CONCLUSIONS: CMR is a promising alternative for LAAC planning in cases where TEE or CCTA are contraindicated or unavailable.
Asunto(s)
Apéndice Atrial , Fibrilación Atrial , Trombosis , Humanos , Apéndice Atrial/diagnóstico por imagen , Apéndice Atrial/cirugía , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Estudios Retrospectivos , Ecocardiografía Transesofágica/métodos , Imagen por Resonancia Magnética , Trombosis/diagnóstico por imagen , Cateterismo Cardíaco , Resultado del TratamientoRESUMEN
PURPOSE OF REVIEW: Cancer treatment-related cardiotoxicity (CTRC) represents a significant cause of morbidity and mortality worldwide. The purpose of our review is to summarize the epidemiology, natural history, and pathophysiology of cardiotoxicity-related to cancer treatment. We also summarize appropriate screening, surveillance, and management of CTRC. While cardiotoxicity is characteristically associated with anthracyclines, HER2-B antagonists, and radiation therapy (XRT), there is growing recognition of toxicity with immune checkpoint inhibitors (ICI), tyrosine kinase inhibitors, and proteasome inhibitors. RECENT FINDINGS: Patients at risk for cardiotoxicity should be screened based on available guidelines, generally with serial echocardiograms. The role of medical heart failure (HF) therapies is controversial in patients with asymptomatic left ventricular dysfunction but may be considered in some instances. Once symptomatic HF has developed, treatment should be in accordance with ACC/AHA guidelines. The goal in caring for patients receiving cancer treatment is to optimize cardiac function and prevent interruptions in potentially lifesaving cancer treatment.
Asunto(s)
Antineoplásicos/efectos adversos , Cardiomiopatías/prevención & control , Cardiotoxicidad/prevención & control , Neoplasias/tratamiento farmacológico , Función Ventricular Izquierda/efectos de los fármacos , Antineoplásicos/uso terapéutico , Cardiomiopatías/inducido químicamente , Cardiomiopatías/diagnóstico , Ecocardiografía , Humanos , Factores de RiesgoRESUMEN
A 52-year-old man presented with altered mental status and report of prior complaint of chest pain. On electrocardiography, anterolateral ST-segment elevations with Q-waves in the septal leads were seen. Initial echocardiography images demonstrated a thickened anteroseptum. Further imaging showed the presence of a well-attached laminated apical thrombus. Contrast echocardiography images showed that the thrombus had minimal attachment to the endocardial surface. CT head subsequently showed the presence of acute stroke. The case demonstrates the additional value of contrast echocardiography in the evaluation of cardiac masses despite the certainty in the diagnosis of a thrombus.
Asunto(s)
Trombosis Coronaria/diagnóstico por imagen , Ecocardiografía/métodos , Resultado Fatal , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los ResultadosRESUMEN
Central giant cell tumors (CGCTs) are uncommon lesions occurring in the jaw. They are benign but locally destructive osteolytic lesions. They usually occur in pediatric patients 5 to 15 years of age. Multiple noninvasive modalities of treatment (intralesional steroids, interferon, calcitonin, and denosumab) have been described for those lesions, but for those that are refractory to treatment, enucleation and curettage or resection is a curative surgery. This case report describes a pediatric patient who was diagnosed with an aggressive CGCT of the left mandible encompassing the right angle to the condyle. The lesion became refractory to noninvasive treatments and immediate resection and reconstruction was performed using principles of tissue engineering. After 5 years of close observation, the patient showed normal morphology and growth of his mandible, but surprisingly developed a left mandibular third molar (tooth 17) in the site of the mandibular resection and reconstruction. This is the first case report in the literature to show the spontaneous development of teeth in a human reconstructed mandible, contributing evidence toward the functional matrix theory of mandibular growth and ectodermal origin of teeth.
Asunto(s)
Trasplante Óseo/métodos , Tumor Óseo de Células Gigantes/cirugía , Neoplasias Mandibulares/cirugía , Reconstrucción Mandibular/métodos , Tercer Molar/crecimiento & desarrollo , Biopsia , Proteína Morfogenética Ósea 2/farmacología , Niño , Tomografía Computarizada de Haz Cónico , Diagnóstico Diferencial , Tumor Óseo de Células Gigantes/diagnóstico , Humanos , Masculino , Neoplasias Mandibulares/diagnóstico , Plasma Rico en Plaquetas , Extracción DentalRESUMEN
This study sought to evaluate the impact of severe obesity on image quality and ventricular function assessment in cardiovascular magnetic resonance (MRI) and trans-thoracic echocardiography (TTE). We studied 100 consecutive patients who underwent clinically indicated cardiac MRI and TTE studies within 12 months between July 2017 and December 2020; 50 (28 females and 22 males; 54.5 ± 18.7 years) with normal body mass index (BMI) (18.5-25 kg/m2) and 50 (21 females and 29 males; 47.2 ± 13.3 years) with severe obesity (BMI ≥ 40 kg/m2). MRI and TTE image quality scores were compared within and across cohorts using a linear mixed model. Categorical left (LVF) and right (RVF) ventricular function were compared using Cohens Kappa statistic. Mean BMI for normal weight and obese cohorts were 22.2 ± 1.7 kg/m2 and 50.3 ± 5.9 kg/m2, respectively. Out of a possible 93 points, mean MRI image quality score was 91.5 ± 2.5 for patients with normal BMI, and 88.4 ± 5.5 for patients with severe obesity; least square (LS) mean difference 3.1, p = 0.460. TTE scores were 64.2 ± 13.6 for patients with normal BMI and 46.0 ± 12.9 for patients with severe obesity, LS mean difference 18.2, p < 0.001. Ventricular function agreement between modalities was worse in the obese cohort for both LVF (72% vs 80% agreement; kappa 0.53 vs 0.70, obese vs. normal BMI), and RVF (58% vs 72% agreement, kappa 0.18 vs 0.34, obese vs. normal BMI). Severe obesity had limited impact on cardiac MRI image quality, while obesity significantly degraded TTE image quality and ventricular function agreement with MRI.
Asunto(s)
Índice de Masa Corporal , Ecocardiografía , Obesidad Mórbida , Valor Predictivo de las Pruebas , Función Ventricular Izquierda , Función Ventricular Derecha , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Obesidad Mórbida/complicaciones , Obesidad Mórbida/diagnóstico por imagen , Obesidad Mórbida/fisiopatología , Reproducibilidad de los Resultados , Estudios Retrospectivos , Imagen por Resonancia Magnética , Imagen por Resonancia CinemagnéticaRESUMEN
The electrocardiogram (ECG) signal is prone to distortions from gradient and radiofrequency interference and the magnetohydrodynamic effect during cardiovascular magnetic resonance imaging (CMR). Although Pilot Tone Cardiac (PTC) triggering has the potential to overcome these limitations, effectiveness across various CMR techniques has yet to be established. To evaluate the performance of PTC triggering in a comprehensive CMR exam. Fifteen volunteers and 20 patients were recruited at two centers. ECG triggered images were collected for comparison in a subset of sequences. The PTC trigger accuracy was evaluated against ECG in cine acquisitions. Two experienced readers scored image quality in PTC-triggered cine, late gadolinium enhancement (LGE), and T1- and T2-weighted dark-blood turbo spin echo (DB-TSE) images. Quantitative cardiac function, flow, and parametric mapping values obtained using PTC and ECG triggered sequences were compared. Breath-held segmented cine used for trigger timing analysis was collected in 15 volunteers and 14 patients. PTC calibration failed in three volunteers and one patient; ECG trigger recording failed in one patient. Out of 1987 total heartbeats, three mismatched trigger PTC-ECG pairs were found. Image quality scores showed no significant difference between PTC and ECG triggering. There was no significant difference found in quantitative measurements in volunteers. In patients, the only significant difference was found in post-contrast T1 (p = 0.04). ICC showed moderate to excellent agreement in all measurements. PTC performance was equivalent to ECG in terms of triggering consistency, image quality, and quantitative image measurements across multiple CMR applications.
Asunto(s)
Medios de Contraste , Gadolinio , Humanos , Valor Predictivo de las Pruebas , Imagen por Resonancia Magnética , Cafeína , Espectroscopía de Resonancia Magnética , Imagen por Resonancia CinemagnéticaRESUMEN
This document summarizes the relevant literature for the selection of preprocedural imaging in three clinical scenarios in patients needing endovascular treatment or cardioversion of atrial fibrillation. These clinical scenarios include preprocedural imaging prior to radiofrequency ablation; prior to left atrial appendage occlusion; and prior to cardioversion. The appropriateness of imaging modalities as they apply to each clinical scenario is rated as usually appropriate, may be appropriate, and usually not appropriate to assist the selection of the most appropriate imaging modality in the corresponding clinical scenarios. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Asunto(s)
Fibrilación Atrial , Medicina Basada en la Evidencia , Sociedades Médicas , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Humanos , Estados Unidos , Cuidados Preoperatorios/métodos , Cardioversión Eléctrica/métodos , Atrios Cardíacos/diagnóstico por imagen , Apéndice Atrial/diagnóstico por imagen , Apéndice Atrial/cirugíaRESUMEN
Background: The electrocardiogram (ECG) signal is prone to distortions from gradient and radiofrequency interference and the magnetohydrodynamic effect during cardiovascular magnetic resonance imaging (CMR). Although Pilot Tone Cardiac (PTC) triggering has the potential to overcome these limitations, effectiveness across various CMR techniques has yet to be established. Purpose: To evaluate the performance of PTC triggering in a comprehensive CMR exam. Methods: Fifteen volunteers and twenty patients were recruited at two centers. ECG triggered images were collected for comparison in a subset of sequences. The PTC trigger accuracy was evaluated against ECG in cine acquisitions. Two experienced readers scored image quality in PTC-triggered cine, late gadolinium enhancement (LGE), and T1- and T2-weighted dark-blood turbo spin echo (DB-TSE) images. Quantitative cardiac function, flow, and parametric mapping values obtained using PTC and ECG triggered sequences were compared. Results: Breath-held segmented cine used for trigger timing analysis was collected in 15 volunteers and 14 patients. PTC calibration failed in three volunteers and one patient; ECG trigger recording failed in one patient. Out of 1987 total heartbeats, three mismatched trigger PTC-ECG pairs were found. Image quality scores showed no significant difference between PTC and ECG triggering. There was no significant difference found in quantitative measurements in volunteers. In patients, the only significant difference was found in post-contrast T1 (p = 0.04). ICC showed moderate to excellent agreement in all measurements. Conclusion: PTC performance was equivalent to ECG in terms of triggering consistency, image quality, and quantitative image measurements across multiple CMR applications.
RESUMEN
Background: Contemporary advances in low-field magnetic resonance imaging systems can potentially widen access to cardiovascular magnetic resonance (CMR) imaging. We present our initial experience in building a comprehensive CMR protocol on a commercial 0.55 T system with a gradient performance of 26 mT/m amplitude and 45 T/m/s slew rate. To achieve sufficient image quality, we adapted standard imaging techniques when possible, and implemented compressed-sensing (CS) based techniques when needed in an effort to compensate for the inherently low signal-to-noise ratio at lower field strength. Methods: A prototype CMR exam was built on an 80 cm, ultra-wide bore commercial 0.55 T MR system. Implementation of all components aimed to overcome the inherently lower signal of low-field and the relatively longer echo and repetition times owing to the slower gradients. CS-based breath-held and real-time cine imaging was built utilizing high acceleration rates to meet nominal spatial and temporal resolution recommendations. Similarly, CS 2D phase-contrast cine was implemented for flow. Dark-blood turbo spin echo sequences with deep learning based denoising were implemented for morphology assessment. Magnetization-prepared single-shot myocardial mapping techniques incorporated additional source images. CS-based dynamic contrast-enhanced imaging was implemented for myocardial perfusion and 3D MR angiography. Non-contrast 3D MR angiography was built with electrocardiogram-triggered, navigator-gated magnetization-prepared methods. Late gadolinium enhanced (LGE) tissue characterization methods included breath-held segmented and free-breathing single-shot imaging with motion correction and averaging using an increased number of source images. Proof-of-concept was demonstrated through porcine infarct model, healthy volunteer, and patient scans. Results: Reasonable image quality was demonstrated for cardiovascular structure, function, flow, and LGE assessment. Low-field afforded utilization of higher flip angles for cine and MR angiography. CS-based techniques were able to overcome gradient speed limitations and meet spatial and temporal resolution recommendations with imaging times comparable to higher performance scanners. Tissue mapping and perfusion imaging require further development. Conclusion: We implemented cardiac applications demonstrating the potential for comprehensive CMR on a novel commercial 0.55 T system. Further development and validation studies are needed before this technology can be applied clinically.
RESUMEN
BACKGROUND: Myocardial injury in patients with COVID-19 and suspected cardiac involvement is not well understood. OBJECTIVES: The purpose of this study was to characterize myocardial injury in a multicenter cohort of patients with COVID-19 and suspected cardiac involvement referred for cardiac magnetic resonance (CMR). METHODS: This retrospective study consisted of 1,047 patients from 18 international sites with polymerase chain reaction-confirmed COVID-19 infection who underwent CMR. Myocardial injury was characterized as acute myocarditis, nonacute/nonischemic, acute ischemic, and nonacute/ischemic patterns on CMR. RESULTS: In this cohort, 20.9% of patients had nonischemic injury patterns (acute myocarditis: 7.9%; nonacute/nonischemic: 13.0%), and 6.7% of patients had ischemic injury patterns (acute ischemic: 1.9%; nonacute/ischemic: 4.8%). In a univariate analysis, variables associated with acute myocarditis patterns included chest discomfort (OR: 2.00; 95% CI: 1.17-3.40, P = 0.01), abnormal electrocardiogram (ECG) (OR: 1.90; 95% CI: 1.12-3.23; P = 0.02), natriuretic peptide elevation (OR: 2.99; 95% CI: 1.60-5.58; P = 0.0006), and troponin elevation (OR: 4.21; 95% CI: 2.41-7.36; P < 0.0001). Variables associated with acute ischemic patterns included chest discomfort (OR: 3.14; 95% CI: 1.04-9.49; P = 0.04), abnormal ECG (OR: 4.06; 95% CI: 1.10-14.92; P = 0.04), known coronary disease (OR: 33.30; 95% CI: 4.04-274.53; P = 0.001), hospitalization (OR: 4.98; 95% CI: 1.55-16.05; P = 0.007), natriuretic peptide elevation (OR: 4.19; 95% CI: 1.30-13.51; P = 0.02), and troponin elevation (OR: 25.27; 95% CI: 5.55-115.03; P < 0.0001). In a multivariate analysis, troponin elevation was strongly associated with acute myocarditis patterns (OR: 4.98; 95% CI: 1.76-14.05; P = 0.003). CONCLUSIONS: In this multicenter study of patients with COVID-19 with clinical suspicion for cardiac involvement referred for CMR, nonischemic and ischemic patterns were frequent when cardiac symptoms, ECG abnormalities, and cardiac biomarker elevations were present.
Asunto(s)
COVID-19 , Enfermedad de la Arteria Coronaria , Lesiones Cardíacas , Miocarditis , Humanos , Miocarditis/patología , COVID-19/complicaciones , Estudios Retrospectivos , Valor Predictivo de las Pruebas , Imagen por Resonancia Magnética , Troponina , Espectroscopía de Resonancia MagnéticaRESUMEN
OBJECTIVES: While cardiac amyloidosis (CA) classically involves the left ventricle (LV), less is known about its impact on the right ventricle (RV) and pulmonary vasculature. We performed a retrospective analysis to identify the prevalence and types of pulmonary hypertension (PH) profiles in CA and to determine haemodynamic and cardiovascular magnetic resonance (CMR) predictors of major adverse cardiovascular events (MACE). METHODS: Patients with CA who underwent CMR and right heart catheterisation (RHC) within 1 year between 2010 and 2019 were included. Patients were assigned the following haemodynamic profiles based on RHC: no PH, precapillary PH, isolated postcapillary PH (IPCPH), or combined precapillary and postcapillary PH (CPCPH). The relationship between PH profile and MACE (death, heart failure hospitalisation) was assessed using survival analysis. CMR and RV parameters were correlated with MACE using Cox-regression analysis. RESULTS: A total of 52 patients were included (age 69±9 years, 85% men). RHC was performed during biopsy in 44 (85%) and for clinical indications in 8 (15%) patients. Rates of no PH, precapillary PH, IPCPH and CPCPH were 5 (10%), 3 (6%), 29 (55%) and 15 (29%), respectively. Haemodynamic PH profile did not correlate with risk of death (p=0.98) or MACE (p=0.67). Transpulmonary gradient (TPG) (HR 0.88, CI 0.80 to 0.97), RV, (HR 0.95, CI 0.92 to 0.98) and LV ejection fraction (HR 0.95, CI 0.92 to 0.98) were significantly associated with MACE. CONCLUSIONS: PH is highly prevalent in CA, even at the time of diagnosis. While IPCPH was most common, CPCPH is not infrequent. TPG and RV ejection fraction (RVEF) are prognostic markers in this population.
Asunto(s)
Amiloidosis , Hipertensión Pulmonar , Anciano , Amiloidosis/diagnóstico , Amiloidosis/epidemiología , Femenino , Hemodinámica , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/epidemiología , Hipertensión Pulmonar/etiología , Masculino , Persona de Mediana Edad , Prevalencia , Estudios RetrospectivosRESUMEN
A 60-year-old woman with a past medical history of asthma presented with fulminant myocarditis 9 days after testing positive for SARS-CoV-2 and 16 days after developing symptoms consistent with COVID-19. Her hospital course was complicated by the need for veno-arterial extracorporeal membrane oxygenation, ventricular arrhythmias, and pseudomonas bacteremia. She ultimately recovered and was discharged to home with normal left ventricular systolic function. Thereafter, she developed symptomatic ventricular tachycardia, for which she received an implantable cardioverter-defibrillator and antiarrhythmic drug therapy.
RESUMEN
A 60-year-old woman with a past medical history of asthma presented with fulminant myocarditis 9 days after testing positive for SARS-CoV-2 and 16 days after developing symptoms consistent with COVID-19. Her hospital course was complicated by the need for veno-arterial extracorporeal membrane oxygenation, ventricular arrhythmias, and pseudomonas bacteremia. She ultimately recovered and was discharged to home with normal left ventricular systolic function. Thereafter, she developed symptomatic ventricular tachycardia, for which she received an implantable cardioverter-defibrillator and antiarrhythmic drug therapy.
Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Miocarditis , Arritmias Cardíacas/complicaciones , COVID-19/complicaciones , Vías Clínicas , Femenino , Humanos , Persona de Mediana Edad , Miocarditis/diagnóstico , Miocarditis/etiología , Miocarditis/terapia , SARS-CoV-2RESUMEN
Cardiac radioablation with SBRT is a very promising non-invasive modality for the treatment of refractory VT and potentially other cardiac arrhythmias. Initial reports indicate that it is relatively safe and associated with excellent responses, particularly in reduction of ICD-related events, need for anti-arrhythmic medications, and resulting in significantly improved quality of life for patients. Establishment of objective criteria for candidates for cardiac radioablation will accelerate the adoption of this important radiation therapy modality in the treatment of refractory VT and other cardiac arrhythmias in the coming years. In addition, in order to develop more prospective safety and efficacy data, treatment of patients should ideally be performed in the context of clinical trials or prospective registries at, or in collaboration with, experienced centers. Taken together, the future of cardiac radioablation is rich and worthy of further investigation to become a standard treatment in the armamentarium against refractory VT.
RESUMEN
PURPOSE: Cardiac radioablation using stereotactic body radiation therapy is gaining popularity as a noninvasive treatment for otherwise refractory ventricular arrhythmias. As radiation oncologists might be unaccustomed to the lexicon used by cardiologists to describe the location of arrhythmogenic foci, a preliminary guide to cardiac-specific anatomy and orientation is needed to foster effective communication between the radiation oncologist and cardiology team. METHODS AND MATERIALS: Electrocardiogram-gated and respiratory-gated computed tomography imaging was acquired per institutional protocol. Additional relevant imaging modalities are described. The American Heart Association 17-segment model is described in detail because this framework is used frequently by cardiologists to describe the location left ventricular abnormalities. RESULTS: A step-by-step guide is provided for properly rotating the heart from standard orthogonal views obtained during radiation simulation to the cardiac-specific orientation needed to appreciate the 17-segment model. Once the proper configuration is achieved, the location of each segment is defined in detail. CONCLUSIONS: This atlas serves as an introduction to the relevant anatomy and principles, and it provides a suggested approach to help delineate cardiac radioablation targets using the established American Heart Association 17-segment model.
Asunto(s)
Ablación por Catéter/métodos , Radiocirugia/métodos , Taquicardia Ventricular/terapia , American Heart Association , Electrocardiografía , Humanos , Rotación , Taquicardia Ventricular/diagnóstico por imagen , Taquicardia Ventricular/fisiopatología , Estados UnidosRESUMEN
In cardiac amyloidosis (CA), amyloid infiltration results in increased left ventricular (LV) mass disproportionate to electrocardiographic (EKG) voltage. We assessed the relationship between LV mass-voltage ratio with subsequent heart failure hospitalization (HHF) and mortality in CA. Patients with confirmed CA and comprehensive cardiovascular magnetic resonance (CMR) and EKG exams were included. CMR-derived LV mass was indexed to body surface area. EKG voltage was assessed using Sokolow, Cornell, and Limb-voltage criteria. The optimal LV mass-voltage ratio for predicting outcomes was determined using receiver operating characteristic curve analysis. The relationship between LV mass-voltage ratio and HHF was assessed using Cox proportional hazards analysis adjusting for significant covariates. A total of 85 patients (mean 69 ± 11 years, 22% female) were included, 42 with transthyretin and 43 with light chain CA. At a median of 3.4-year follow-up, 49% of patients experienced HHF and 60% had died. In unadjusted analysis, Cornell LV mass-voltage ratio was significantly associated with HHF (HR, 1.05; 95% CI 1.02-1.09, p = 0.001) and mortality (HR, 1.05; 95% CI 1.02-1.07, p = 0.001). Using ROC curve analysis, the optimal cutoff value for Cornell LV mass-voltage ratio to predict HHF was 6.7 gm/m2/mV. After adjusting for age, NYHA class, BNP, ECV, and LVEF, a Cornell LV mass-voltage ratio > 6.7 gm/m2/mV was significantly associated with HHF (HR 2.25, 95% CI 1.09-4.61; p = 0.03) but not mortality. Indexed LV mass-voltage ratio is associated with subsequent HHF and may be a useful prognostic marker in cardiac amyloidosis.
Asunto(s)
Amiloidosis/diagnóstico , Cardiomiopatías/diagnóstico , Electrocardiografía , Sistema de Conducción Cardíaco/fisiopatología , Insuficiencia Cardíaca/diagnóstico , Ventrículos Cardíacos/diagnóstico por imagen , Hospitalización , Imagen por Resonancia Cinemagnética , Potenciales de Acción , Anciano , Anciano de 80 o más Años , Amiloidosis/mortalidad , Amiloidosis/fisiopatología , Amiloidosis/terapia , Cardiomiopatías/mortalidad , Cardiomiopatías/fisiopatología , Cardiomiopatías/terapia , Femenino , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Frecuencia Cardíaca , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Función Ventricular Izquierda , Remodelación VentricularRESUMEN
Importance: Myocarditis is a leading cause of sudden death in competitive athletes. Myocardial inflammation is known to occur with SARS-CoV-2. Different screening approaches for detection of myocarditis have been reported. The Big Ten Conference requires comprehensive cardiac testing including cardiac magnetic resonance (CMR) imaging for all athletes with COVID-19, allowing comparison of screening approaches. Objective: To determine the prevalence of myocarditis in athletes with COVID-19 and compare screening strategies for safe return to play. Design, Setting, and Participants: Big Ten COVID-19 Cardiac Registry principal investigators were surveyed for aggregate observational data from March 1, 2020, through December 15, 2020, on athletes with COVID-19. For athletes with myocarditis, presence of cardiac symptoms and details of cardiac testing were recorded. Myocarditis was categorized as clinical or subclinical based on the presence of cardiac symptoms and CMR findings. Subclinical myocarditis classified as probable or possible myocarditis based on other testing abnormalities. Myocarditis prevalence across universities was determined. The utility of different screening strategies was evaluated. Exposures: SARS-CoV-2 by polymerase chain reaction testing. Main Outcome and Measure: Myocarditis via cardiovascular diagnostic testing. Results: Representing 13 universities, cardiovascular testing was performed in 1597 athletes (964 men [60.4%]). Thirty-seven (including 27 men) were diagnosed with COVID-19 myocarditis (overall 2.3%; range per program, 0%-7.6%); 9 had clinical myocarditis and 28 had subclinical myocarditis. If cardiac testing was based on cardiac symptoms alone, only 5 athletes would have been detected (detected prevalence, 0.31%). Cardiac magnetic resonance imaging for all athletes yielded a 7.4-fold increase in detection of myocarditis (clinical and subclinical). Follow-up CMR imaging performed in 27 (73.0%) demonstrated resolution of T2 elevation in all (100%) and late gadolinium enhancement in 11 (40.7%). Conclusions and Relevance: In this cohort study of 1597 US competitive athletes with CMR screening after COVID-19 infection, 37 athletes (2.3%) were diagnosed with clinical and subclinical myocarditis. Variability was observed in prevalence across universities, and testing protocols were closely tied to the detection of myocarditis. Variable ascertainment and unknown implications of CMR findings underscore the need for standardized timing and interpretation of cardiac testing. These unique CMR imaging data provide a more complete understanding of the prevalence of clinical and subclinical myocarditis in college athletes after COVID-19 infection. The role of CMR in routine screening for athletes safe return to play should be explored further.