Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8015): 149-157, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778096

RESUMEN

Accessing the natural genetic diversity of species unveils hidden genetic traits, clarifies gene functions and allows the generalizability of laboratory findings to be assessed. One notable discovery made in natural isolates of Saccharomyces cerevisiae is that aneuploidy-an imbalance in chromosome copy numbers-is frequent1,2 (around 20%), which seems to contradict the substantial fitness costs and transient nature of aneuploidy when it is engineered in the laboratory3-5. Here we generate a proteomic resource and merge it with genomic1 and transcriptomic6 data for 796 euploid and aneuploid natural isolates. We find that natural and lab-generated aneuploids differ specifically at the proteome. In lab-generated aneuploids, some proteins-especially subunits of protein complexes-show reduced expression, but the overall protein levels correspond to the aneuploid gene dosage. By contrast, in natural isolates, more than 70% of proteins encoded on aneuploid chromosomes are dosage compensated, and average protein levels are shifted towards the euploid state chromosome-wide. At the molecular level, we detect an induction of structural components of the proteasome, increased levels of ubiquitination, and reveal an interdependency of protein turnover rates and attenuation. Our study thus highlights the role of protein turnover in mediating aneuploidy tolerance, and shows the utility of exploiting the natural diversity of species to attain generalizable molecular insights into complex biological processes.


Asunto(s)
Aneuploidia , Complejo de la Endopetidasa Proteasomal , Proteolisis , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Compensación de Dosificación (Genética) , Variación Genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Proteoma/metabolismo , Proteoma/genética , Proteómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación , Perfilación de la Expresión Génica , Genómica
2.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36947101

RESUMEN

Epigenetic mechanisms such as DNA methylation (DNAme) are thought to comprise an invaluable adaptive toolkit in the early stages of local adaptation, especially when genetic diversity is constrained. However, the link between genetic diversity and DNAme has been scarcely examined in natural populations, despite its potential to shed light on the evolutionary forces acting on methylation state. Here, we analyzed reduced-representation bisulfite sequencing and whole-genome pool-seq data from marine and freshwater stickleback populations to examine the relationship between DNAme variation (between- and within-population) and nucleotide diversity in the context of freshwater adaptation. We find that sites that are differentially methylated between populations have higher underlying standing genetic variation, with diversity higher among sites that gained methylation in freshwater than those that lost it. Strikingly, although nucleotide diversity is generally lower in the freshwater population as expected from a population bottleneck, this is not the case for sites that lost methylation, which instead have elevated nucleotide diversity in freshwater compared with marine. Subsequently, we show that nucleotide diversity is higher among sites with ancestrally variable methylation and also positively correlates with the sensitivity to environmentally induced methylation change. The results suggest that as selection on the control of methylation state becomes relaxed, so too does selection against mutations at the sites themselves. Increased epigenetic variance in a population is therefore likely to precede genetic diversification.


Asunto(s)
Metilación de ADN , Nucleótidos , Nucleótidos/genética , Adaptación Fisiológica/genética , Aclimatación , Evolución Biológica , ADN
3.
Genet Med ; 26(3): 101036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054408

RESUMEN

PURPOSE: Genetic variants at the low end of the penetrance spectrum have historically been challenging to interpret because their high population frequencies exceed the disease prevalence of the associated condition, leading to a lack of clear segregation between the variant and disease. There is currently substantial variation in the classification of these variants, and no formal classification framework has been widely adopted. The Clinical Genome Resource Low Penetrance/Risk Allele Working Group was formed to address these challenges and promote harmonization within the clinical community. METHODS: The work presented here is the product of internal and community Likert-scaled surveys in combination with expert consensus within the Working Group. RESULTS: We formally recognize risk alleles and low-penetrance variants as distinct variant classes from those causing highly penetrant disease that require special considerations regarding their clinical classification and reporting. First, we provide a preferred terminology for these variants. Second, we focus on risk alleles and detail considerations for reviewing relevant studies and present a framework for the classification these variants. Finally, we discuss considerations for clinical reporting of risk alleles. CONCLUSION: These recommendations support harmonized interpretation, classification, and reporting of variants at the low end of the penetrance spectrum.


Asunto(s)
Variación Genética , Humanos , Alelos , Variación Genética/genética , Penetrancia , Frecuencia de los Genes
4.
Mol Psychiatry ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882501

RESUMEN

Genome-wide association studies (GWAS) of mood disorders in large case-control cohorts have identified numerous risk loci, yet pathophysiological mechanisms remain elusive, primarily due to the very small effects of common variants. We sought to discover risk variants with larger effects by conducting a genome-wide association study of mood disorders in a founder population, the Old Order Amish (OOA, n = 1,672). Our analysis revealed four genome-wide significant risk loci, all of which were associated with >2-fold relative risk. Quantitative behavioral and neurocognitive assessments (n = 314) revealed effects of risk variants on sub-clinical depressive symptoms and information processing speed. Network analysis suggested that OOA-specific risk loci harbor novel risk-associated genes that interact with known neuropsychiatry-associated genes via gene interaction networks. Annotation of the variants at these risk loci revealed population-enriched, non-synonymous variants in two genes encoding neurodevelopmental transcription factors, CUX1 and CNOT1. Our findings provide insight into the genetic architecture of mood disorders and a substrate for mechanistic and clinical studies.

5.
Genome Res ; 30(4): 553-565, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269134

RESUMEN

Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.


Asunto(s)
Pico/anatomía & histología , Evolución Biológica , Aves/anatomía & histología , Aves/genética , Estudios de Asociación Genética , Morfogénesis/genética , Regiones no Traducidas , Animales , Secuencia Conservada , Evolución Molecular , Heterogeneidad Genética , Sistemas de Lectura Abierta , Sitios de Carácter Cuantitativo , Selección Genética
6.
J Genet Couns ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537905

RESUMEN

Diabetes mellitus is a group of diseases characterized by hyperglycemia and its consequences, affecting over 34 million individuals in the United States and 422 million worldwide. While most diabetes is polygenic and is classified as type 1 (T1D), type 2 (T2D), or gestational diabetes (GDM), at least 0.4% of all diabetes is monogenic in nature. Correct diagnosis of monogenic diabetes has important implications for glycemic management and genetic counseling. We provide this Practice Resource to familiarize the genetic counseling community with (1) the existence of monogenic diabetes, (2) how it differs from more common polygenic/complex diabetes types, (3) the advantage of a correct diagnosis, and (4) guidance for identifying, counseling, and testing patients and families with suspected monogenic diabetes. This document is intended for genetic counselors and other healthcare professionals providing clinical services in any setting, with the goal of maximizing the likelihood of a correct diagnosis of monogenic diabetes and access to related care.

7.
Am J Med Genet A ; 188(7): 2119-2128, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35442562

RESUMEN

Genetically isolated populations that arise due to recent bottleneck events have reduced genetic variation reflecting the common set of founders. Increased genetic relatedness among members of isolated populations puts them at increased risk for some recessive disorders that are rare in outbred populations. To assess the burden on reproductive health, we compared frequencies of adverse reproductive outcomes between Amish couples who were both heterozygous carriers of a highly penetrant pathogenic or likely pathogenic variant and noncarrier couples from the same Amish community. In addition, we evaluated whether overall genetic relatedness of parents was associated with reproductive outcomes. Of the 1824 couples included in our study, 11.1% were at risk of producing a child with an autosomal recessive disorder. Carrier couples reported a lower number of miscarriages compared to noncarrier couples (p = 0.02), although the number of stillbirths (p = 0.3), live births (p = 0.9), and number of pregnancies (p = 0.9) did not differ significantly between groups. In contrast, higher overall relatedness between spouses was positively correlated with number of live births (p < 0.0001), pregnancies (p < 0.0001), and stillbirths (p = 0.03), although not with the number of miscarriages (p = 0.4). These results highlight a complex association between relatedness of parents and reproductive health outcomes in this community.


Asunto(s)
Aborto Espontáneo , Amish , Aborto Espontáneo/epidemiología , Aborto Espontáneo/genética , Amish/genética , Femenino , Heterocigoto , Humanos , Recién Nacido , Padres , Embarazo , Mortinato/epidemiología , Mortinato/genética
8.
Eur J Neurol ; 29(4): 1174-1180, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34935254

RESUMEN

BACKGROUND AND PURPOSE: Muscular A-type lamin-interacting protein (MLIP) is most abundantly expressed in cardiac and skeletal muscle. In vitro and animal studies have shown its regulatory role in myoblast differentiation and in organization of myonuclear positioning in skeletal muscle, as well as in cardiomyocyte adaptation and cardiomyopathy. We report the association of biallelic truncating variation in the MLIP gene with human disease in five individuals from two unrelated pedigrees. METHODS: Clinical evaluation and exome sequencing were performed in two unrelated families with elevated creatine kinase level. RESULTS: Family 1. A 6-year-old girl born to consanguineous parents of Arab-Muslim origin presented with myalgia, early fatigue after mild-to-moderate physical exertion, and elevated creatine kinase levels up to 16,000 U/L. Exome sequencing revealed a novel homozygous nonsense variant, c.2530C>T; p.Arg844Ter, in the MLIP gene. Family 2. Three individuals from two distantly related families of Old Order Amish ancestry presented with elevated creatine kinase levels, one of whom also presented with abnormal electrocardiography results. On exome sequencing, all showed homozygosity for a novel nonsense MLIP variant c.1825A>T; p.Lys609Ter. Another individual from this pedigree, who had sinus arrhythmia and for whom creatine kinase level was not available, was also homozygous for this variant. CONCLUSIONS: Our findings suggest that biallelic truncating variants in MLIP result in myopathy characterized by hyperCKemia. Moreover, these cases of MLIP-related disease may indicate that at least in some instances this condition is associated with muscle decompensation and fatigability during low-to-moderate intensity muscle exertion as well as possible cardiac involvement.


Asunto(s)
Cardiomiopatías , Enfermedades Musculares , Adaptación Fisiológica , Animales , Humanos , Enfermedades Musculares/genética , Mialgia , Linaje
9.
Proc Natl Acad Sci U S A ; 116(32): 15957-15966, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31341085

RESUMEN

Nicotinamide adenine dinucleotide (NAD) provides an important link between metabolism and signal transduction and has emerged as central hub between bioenergetics and all major cellular events. NAD-dependent signaling (e.g., by sirtuins and poly-adenosine diphosphate [ADP] ribose polymerases [PARPs]) consumes considerable amounts of NAD. To maintain physiological functions, NAD consumption and biosynthesis need to be carefully balanced. Using extensive phylogenetic analyses, mathematical modeling of NAD metabolism, and experimental verification, we show that the diversification of NAD-dependent signaling in vertebrates depended on 3 critical evolutionary events: 1) the transition of NAD biosynthesis to exclusive usage of nicotinamide phosphoribosyltransferase (NamPT); 2) the occurrence of nicotinamide N-methyltransferase (NNMT), which diverts nicotinamide (Nam) from recycling into NAD, preventing Nam accumulation and inhibition of NAD-dependent signaling reactions; and 3) structural adaptation of NamPT, providing an unusually high affinity toward Nam, necessary to maintain NAD levels. Our results reveal an unexpected coevolution and kinetic interplay between NNMT and NamPT that enables extensive NAD signaling. This has implications for therapeutic strategies of NAD supplementation and the use of NNMT or NamPT inhibitors in disease treatment.


Asunto(s)
Evolución Biológica , NAD/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Vías Biosintéticas , Células HeLa , Humanos , Cinética , Nicotinamida N-Metiltransferasa , Nicotinamida Fosforribosiltransferasa/química , Nicotinamida Fosforribosiltransferasa/metabolismo , Filogenia , Especificidad por Sustrato , Vertebrados/metabolismo
11.
Genome Res ; 28(7): 975-982, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29858274

RESUMEN

Intrinsically disordered regions occur frequently in proteins and are characterized by a lack of a well-defined three-dimensional structure. Although these regions do not show a higher order of structural organization, they are known to be functionally important. Disordered regions are rapidly evolving, largely attributed to relaxed purifying selection and an increased role of genetic drift. It has also been suggested that positive selection might contribute to their rapid diversification. However, for our own species, it is currently unknown whether positive selection has played a role during the evolution of these protein regions. Here, we address this question by investigating the evolutionary pattern of more than 6600 human proteins with intrinsically disordered regions and their ordered counterparts. Our comparative approach with data from more than 90 mammalian genomes uses a priori knowledge of disordered protein regions, and we show that this increases the power to detect positive selection by an order of magnitude. We can confirm that human intrinsically disordered regions evolve more rapidly, not only within humans but also across the entire mammalian phylogeny. They have, however, experienced substantial evolutionary constraint, hinting at their fundamental functional importance. We find compelling evidence that disordered protein regions are frequent targets of positive selection and estimate that the relative rate of adaptive substitutions differs fourfold between disordered and ordered protein regions in humans. Our results suggest that disordered protein regions are important targets of genetic innovation and that the contribution of positive selection in these regions is more pronounced than in other protein parts.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/genética , Dominios Proteicos/genética , Selección Genética/genética , Animales , Evolución Molecular , Genoma/genética , Humanos , Mamíferos/genética
12.
Am J Med Genet A ; 185(11): 3476-3484, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34467620

RESUMEN

Founder populations may be enriched with certain genetic variants of high clinical impact compared to nonfounder populations due to bottleneck events and genetic drift. Using exome sequencing (ES), we quantified the load of pathogenic variants that may be clinically actionable in 6136 apparently healthy adults living in the Lancaster, PA Old Order Amish settlement. We focused on variants in 78 genes deemed clinically actionable by the American College of Medical Genetics and Genomics (ACMG) or Geisinger's MyCode Health Initiative. ES revealed 3191 total variants among these genes including 480 nonsynonymous variants. After quality control and filtering, we applied the ACMG/AMP guidelines for variant interpretation and classified seven variants, across seven genes, as either pathogenic or likely pathogenic. Through genetic drift, all seven variants, are highly enriched in the Amish compared to nonfounder populations. In total, 14.7% of Lancaster Amish individuals carry at least one of these variants, largely explained by the 13% who harbor a copy of a single variant in APOB. Other studies report combined frequencies of pathogenic/likely pathogenic (P/LP) variants in actionable genes between 2.0% and 6.2% in outbred populations. The Amish population harbors fewer actionable variants compared to similarly characterized nonfounder populations but have a higher frequency of each variant identified, offering opportunities for efficient and cost-effective targeted precision medicine.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Genómica , Adulto , Amish/genética , Exoma/genética , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/epidemiología , Pruebas Genéticas , Variación Genética/genética , Humanos , Masculino , Persona de Mediana Edad , Medicina de Precisión , Secuenciación del Exoma
13.
Mol Cell Proteomics ; 18(Suppl 1): S23-S33, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30760537

RESUMEN

Seminal fluid proteins (SFPs), the nonsperm component of male ejaculates produced by male accessory glands, are viewed as central mediators of reproductive fitness. SFPs effect both male and female post-mating functions and show molecular signatures of rapid adaptive evolution. Although Drosophila melanogaster, is the dominant insect model for understanding SFP evolution, understanding of SFP evolutionary causes and consequences require additional comparative analyses of close and distantly related taxa. Although SFP identification was historically challenging, advances in label-free quantitative proteomics expands the scope of studying other systems to further advance the field. Focused studies of SFPs has so far overlooked the proteomes of male reproductive glands and their inherent complex protein networks for which there is little information on the overall signals of molecular evolution. Here we applied label-free quantitative proteomics to identify the accessory gland proteome and secretome in Drosophila pseudoobscura,, a close relative of D. melanogaster,, and use the dataset to identify both known and putative novel SFPs. Using this approach, we identified 163 putative SFPs, 32% of which overlapped with previously identified D. melanogaster, SFPs and show that SFPs with known extracellular annotation evolve more rapidly than other proteins produced by or contained within the accessory gland. Our results will further the understanding of the evolution of SFPs and the underlying male accessory gland proteins that mediate reproductive fitness of the sexes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteómica , Proteínas de Plasma Seminal/metabolismo , Estructuras Animales/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Ontología de Genes , Redes Reguladoras de Genes , Masculino , Proteoma/metabolismo , Proteínas de Plasma Seminal/genética
14.
Proc Natl Acad Sci U S A ; 115(2): 379-384, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279374

RESUMEN

A major challenge in evaluating the contribution of rare variants to complex disease is identifying enough copies of the rare alleles to permit informative statistical analysis. To investigate the contribution of rare variants to the risk of type 2 diabetes (T2D) and related traits, we performed deep whole-genome analysis of 1,034 members of 20 large Mexican-American families with high prevalence of T2D. If rare variants of large effect accounted for much of the diabetes risk in these families, our experiment was powered to detect association. Using gene expression data on 21,677 transcripts for 643 pedigree members, we identified evidence for large-effect rare-variant cis-expression quantitative trait loci that could not be detected in population studies, validating our approach. However, we did not identify any rare variants of large effect associated with T2D, or the related traits of fasting glucose and insulin, suggesting that large-effect rare variants account for only a modest fraction of the genetic risk of these traits in this sample of families. Reliable identification of large-effect rare variants will require larger samples of extended pedigrees or different study designs that further enrich for such variants.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética , Americanos Mexicanos/genética , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/patología , Salud de la Familia , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/etnología , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Linaje , Fenotipo , Sitios de Carácter Cuantitativo/genética , Secuenciación Completa del Genoma/métodos
15.
Biochem Biophys Res Commun ; 530(1): 107-114, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828271

RESUMEN

Spinal Muscular Atrophy (SMA) is an autosomal recessive neuromuscular disease caused by deletions or mutations in the survival motor neuron (SMN1) gene. An important hallmark of disease progression is the pathology of neuromuscular junctions (NMJs). Affected NMJs in the SMA context exhibit delayed maturation, impaired synaptic transmission, and loss of contact between motor neurons and skeletal muscle. Protection and maintenance of NMJs remains a focal point of therapeutic strategies to treat SMA, and the recent implication of the NMJ-organizer Agrin in SMA pathology suggests additional NMJ organizing molecules may contribute. DOK7 is an NMJ organizer that functions downstream of Agrin. The potential of DOK7 as a putative therapeutic target was demonstrated by adeno-associated virus (AAV)-mediated gene therapy delivery of DOK7 in Amyotrophic Lateral Sclerosis (ALS) and Emery Dreyefuss Muscular Dystrophy (EDMD). To assess the potential of DOK7 as a disease modifier of SMA, we administered AAV-DOK7 to an intermediate mouse model of SMA. AAV9-DOK7 treatment conferred improvements in NMJ architecture and reduced muscle fiber atrophy. Additionally, these improvements resulted in a subtle reduction in phenotypic severity, evidenced by improved grip strength and an extension in survival. These findings reveal DOK7 is a novel modifier of SMA.


Asunto(s)
Proteínas Musculares/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Terapia Genética/métodos , Ratones Endogámicos C57BL , Atrofia Muscular Espinal/patología , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Índice de Severidad de la Enfermedad , Proteína 1 para la Supervivencia de la Neurona Motora/genética
17.
Neuroepidemiology ; 54(5): 392-397, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32739915

RESUMEN

INTRODUCTION: Previous research has suggested that the Amish may experience a relatively high prevalence of Parkinson's disease (PD) and/or parkinsonian motor signs. METHODS: In a large sample from the Amish community in Lancaster County, Pennsylvania, age ≥18 years, we assessed the prevalence of self-reported PD diagnosis. For those without self-reported PD diagnosis, we assessed the frequency of PD-related motor symptoms using a 9-item questionnaire that was designed by the PD Epidemiology Research Group. Lastly, we queried study participants for the presence of 2 nonmotor symptoms that have been commonly linked to PD: bowel movement frequency and daytime sleepiness. RESULTS: Among 2,025 subjects who answered the PD questionnaire, 430 were older than 60 years. Of 430 participants ≥60 years, 5 (1.2%) reported a PD diagnosis. Of those without a PD diagnosis, 10.5% reported ≥1 and 1.2% ≥ 4 motor symptoms for the 9-item PD screening questionnaire. Of the 3,789 subjects who answered the question about bowel movement frequency, 0.7% reported ≤3 bowel movements per week. Among 1,710 subjects who answered the question about daytime sleepiness, 8.1% of the participants reported "always" sleepy during the day. DISCUSSION: These data neither support a markedly higher PD prevalence in the older Lancaster Amish nor do they show dramatically higher motor and/or selected nonmotor symptoms than the general population. Future studies that employ more rigorous procedures for case identification and PD-specific preclinical symptoms/tests are needed to determine the potential differences and similarities among different Amish populations and between Amish and non-Amish populations.


Asunto(s)
Amish , Enfermedad de Parkinson/etnología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estreñimiento/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/epidemiología , Pennsylvania , Proyectos Piloto , Prevalencia , Somnolencia , Encuestas y Cuestionarios , Adulto Joven
18.
Arterioscler Thromb Vasc Biol ; 39(1): 63-72, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30580564

RESUMEN

Objective- Apo (apolipoprotein) CIII inhibits lipoprotein lipase (LpL)-mediated lipolysis of VLDL (very-low-density lipoprotein) triglyceride (TG) and decreases hepatic uptake of VLDL remnants. The discovery that 5% of Lancaster Old Order Amish are heterozygous for the APOC3 R19X null mutation provided the opportunity to determine the effects of a naturally occurring reduction in apo CIII levels on the metabolism of atherogenic containing lipoproteins. Approach and Results- We conducted stable isotope studies of VLDL-TG and apoB100 in 5 individuals heterozygous for the null mutation APOC3 R19X (CT) and their unaffected (CC) siblings. Fractional clearance rates and production rates of VLDL-TG and apoB100 in VLDL, IDL (intermediate-density lipoprotein), LDL, apo CIII, and apo CII were determined. Affected (CT) individuals had 49% reduction in plasma apo CIII levels compared with CCs ( P<0.01) and reduced plasma levels of TG (35%, P<0.02), VLDL-TG (45%, P<0.02), and VLDL-apoB100 (36%, P<0.05). These changes were because of higher fractional clearance rates of VLDL-TG and VLDL-apoB100 with no differences in production rates. CTs had higher rates of the conversion of VLDL remnants to LDL compared with CCs. In contrast, rates of direct removal of VLDL remnants did not differ between the groups. As a result, the flux of apoB100 from VLDL to LDL was not reduced, and the plasma levels of LDL-cholesterol and LDL-apoB100 were not lower in the CT group. Apo CIII production rate was lower in CTs compared with CCs, whereas apo CII production rate was not different between the 2 groups. The fractional clearance rates of both apo CIII and apo CII were higher in CTs than CCs. Conclusions- These studies demonstrate that 50% reductions in plasma apo CIII, in otherwise healthy subjects, results in a significantly higher rate of conversion of VLDL to LDL, with little effect on direct hepatic uptake of VLDL. When put in the context of studies demonstrating significant protection from cardiovascular events in individuals with loss of function variants in the APOC3 gene, our results provide strong evidence that therapies which increase the efficiency of conversion of VLDL to LDL, thereby reducing remnant concentrations, should reduce the risk of cardiovascular disease.


Asunto(s)
Apolipoproteína C-III/fisiología , Lípidos/sangre , Lipoproteínas/metabolismo , Adulto , Anciano , Apolipoproteína B-100/metabolismo , Apolipoproteína C-III/deficiencia , Apolipoproteína C-III/genética , Femenino , Humanos , Lipólisis , Lipoproteínas IDL/metabolismo , Lipoproteínas VLDL/metabolismo , Masculino , Persona de Mediana Edad , Mutación
19.
J Genet Couns ; 29(6): 1106-1113, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32162750

RESUMEN

Most monogenic diabetes is misdiagnosed as either type 1 or type 2 diabetes (T1D/T2D). Few studies have examined the diagnostic challenges from the patients' perspective. This qualitative study aimed to investigate patients' journeys to obtaining a diagnosis of maturity-onset diabetes of the young (MODY) by elucidating the range of factors that can act as barriers and facilitators throughout this process. We recruited participants from the Personalized Diabetes Medicine Program (PDMP) at University of Maryland and used respondent-driven sampling to recruit additional patients. We conducted qualitative phone interviews between October 2016 and June 2017 with nine patients with diagnoses of monogenic diabetes (one HNF4A-MODY, seven GCK-MODY, and one HNF1A-MODY) and one parent of a patient with INS-MODY. Interview data were audio recorded, transcribed, and analyzed both inductively and deductively using thematic content analysis. All patients were female, with a mean age of 35 (range: 7-67 years). The amount of time these patients were misdiagnosed ranged from a few months to 41 years. We identified barriers and facilitators in three broad themes: (a) patient-related (nature of MODY symptoms, perceived test utility, individual personality); (b) provider-related (provider awareness and knowledge, provider communication); and (c) healthcare system-related (cost of testing, access to knowledgeable providers, patient education, and support resources). The diverse range of barriers and facilitators reiterates the complexity of the MODY diagnostic process. Limited awareness and knowledge of MODY from healthcare professionals and patients themselves account for most diagnostic delays described in this study. Efforts to promote awareness of MODY and expand access to screening and testing may result in quicker diagnosis and ensure the downstream benefits of proper treatment.


Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/psicología , Adolescente , Adulto , Anciano , Niño , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Adulto Joven
20.
J Genet Couns ; 29(6): 1142-1150, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32223038

RESUMEN

Familial hypercholesterolemia (FH) is the most common inherited form of high cholesterol that significantly increases the risk for coronary artery disease. Early detection and treatment can decrease morbidity and mortality and provide important risk information to family members. However, FH remains vastly underdiagnosed and undertreated. Cascade screening is the process of iteratively testing first-degree relatives for a genetic disease. It has been shown to effectively identify individuals with undiagnosed FH. The majority of research on methods for cascade screening has been conducted outside of the United States (U.S.). For indirect contact, index cases encourage relatives to undergo testing, and for direct contact, healthcare providers (HCP) obtain the index case's consent to contact relatives and offer information. Currently, there is not an accepted strategy for cascade screening programs in the U.S. This study investigated perspectives on direct and indirect contact for cascade screening from individuals with FH. An online survey was designed in collaboration with the Familial Hypercholesterolemia Foundation (FHF). Fifty-eight percent of U.S. index cases (11/19, 57.9%) and all international index cases (8/8, 100%) indicated willingness to provide contact information for certain at-risk relatives to a HCP for the purpose of directly informing relatives of their risk for FH in a hypothetical scenario. These findings provide an example of U.S. data and additional international data suggesting that some individuals with FH may consider direct contact a reasonable approach to improve screening uptake among family members. These initial findings need further confirmation in a larger group.


Asunto(s)
Hiperlipoproteinemia Tipo II/diagnóstico , Tamizaje Masivo/psicología , Adulto , Diagnóstico Precoz , Femenino , Pruebas Genéticas/métodos , Humanos , Hiperlipoproteinemia Tipo II/complicaciones , Hiperlipoproteinemia Tipo II/genética , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA